登陆注册
2671100000027

第27章 生物大发明(5)

早在1868年,人们就已经发现了核酸。在德国化学家霍佩·赛勒的实验室里,有一个瑞士籍的研究生名叫米歇尔(1844~1895),他对实验室附近的一家医院扔出的带脓血的绷带很感兴趣,因为他知道脓血是那些为了保卫人体健康,与病菌“作战”而战死的白细胞和被杀死的人体细胞的“遗体”。于是他细心地把绷带上的脓血收集起来,并用胃蛋白酶进行分解,结果发现细胞遗体的大部分被分解了,但对细胞核不起作用。他进一步对细胞核内物质进行分析,发现细胞核中含有一种富含磷和氮的物质。霍佩·赛勒用酵母做实验,证明米歇尔对细胞核内物质的发现是正确的。于是他便给这种从细胞核中分离出来的物质取名为“核素”,后来人们发现它呈酸性,因此改叫“核酸”。从此人们对核酸进行了一系列卓有成效的研究。

20世纪初,德国科赛尔(1853~1927)和他的两个学生琼斯(1865~1935)和列文(1869~1940)的研究,弄清了核酸的基本化学结构,认为它是由许多核苷酸组成的大分子。核苷酸是由碱基、核糖和磷酸构成的。其中碱基有4种(腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶),核糖有两种(核糖、脱氧核糖),因此把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)。

列文急于发表他的研究成果,错误地认为4种碱基在核酸中的量是相等的,从而推导出核酸的基本结构是由4个含不同碱基的核苷酸连接成的四核苷酸,以此为基础聚合成核酸,提出了“四核苷酸假说”。这个错误的假说,对认识复杂的核酸结构起了相当大的阻碍作用,也在一定程度上影响了人们对核酸功能的认识。人们认为,虽然核酸存在于重要的结构——细胞核中,但它的结构太简单,很难设想它能在遗传过程中起什么作用。

蛋白质的发现比核酸早30年,发展迅速。进入20世纪时,组成蛋白质的20种氨基酸中已有12种被发现,到1940年则全部被发现。

1902年,德国化学家费歇尔提出氨基酸之间以肽链相连接而形成蛋白质的理论,1917年他合成了由15个甘氨酸和3个亮氨酸组成的18个肽的长链。于是,有的科学家设想,很可能是蛋白质在遗传中起主要作用。如果核酸参与遗传作用,也必然是与蛋白质连在一起的核蛋白在起作用。因此,那时生物界普遍倾向于认为蛋白质是遗传信息的载体。

1928年,美国科学家格里菲斯(1877~1941)用一种有荚膜、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验。他把有荚病菌用高温杀死后与无荚的活病菌一起注入老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌。这说明无荚菌竟从死的有荚菌中获得了什么物质,使无荚菌转化为有荚菌。这种是假设是否正确呢?

格里菲斯又在试管中做实验,发现把死了的有荚菌与活的无荚菌同时放在试管中培养,无荚菌全部变成了有荚菌,并发现使无荚菌长出蛋白质荚的就是已死的有荚菌壳中遗留的核酸(因为在加热中,荚中的核酸并没有被破坏)。格里菲斯称该核酸为“转化因子”。

1944年,美国细菌学家艾弗里(1877~1955)从有荚菌中分离得到活性的“转化因子”,并对这种物质做了检验蛋白质是否存在的试验,结果为阴性,并证明“转化因子”是DNA。但这个发现没有得到广泛的承认,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用。

美籍德国科学家德尔布吕克(1906~1981)的噬菌体小组对艾弗里的发现坚信不移。因为他们在电子显微镜下观察到了噬菌体的形态和进入大肠杆菌的生长过程。噬菌体是以细菌细胞为寄主的一种病毒,个体微小,只有用电子显微镜才能看到它。它像一个小蝌蚪,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩。当噬菌体侵染大肠杆菌时,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注入到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面,再没有起什么作用了。进入细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌。

1952年,噬菌体小组主要成员赫尔希和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验。他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S。先用标记了的T2噬菌体感染大肠杆菌,然后加以分离,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注入大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖。这个实验证明DNA有传递遗传信息的功能,而蛋白质则是由DNA的指令合成的。这一结果立即为学术界所接受。

几乎与此同时,奥地利生物化学家查加夫对核酸中的4种碱基的含量的重新测定取得了成果。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。因此,他对列文的“四核苷酸假说”产生了怀疑。在1948~1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果。实验结果表明,在DNA大分子中嘌呤和嘧啶的总分子数量相等,其中腺嘌呤A与胸腺嘧啶T数量相等,鸟嘌呤G与胞嘧啶C数量相等。说明DNA分子中的碱基A与T、G与C是配对存在的,从而否定了“四核苷酸假说”,并为探索DNA分子结构提供了重要的线索和依据。

1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。

沃森在中学时代是一个极其聪明的孩子,15岁时便进入芝加哥大学学习。当时,由于一个允许较早入学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定谔的《生命是什么?——活细胞的物理面貌》一书,促使他去“发现基因的秘密”。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916~?)的演讲,看到了威尔金斯的DNA X射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中萦回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。

克里克上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了《生命是什么?——活细胞的物理面貌》一书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。

他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNA X射线衍射资料,克里克请威尔金斯到剑桥来度周末。

在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920~1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月~1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。

1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。

有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的“B型”DNA的X射线衍射的照片。沃森一看照片,立刻兴奋起来,心跳也加快了,因为这种图像比以前得到的“A型”简单得多,只要稍稍看一下“B型”的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。

克里克请数学家帮助计算,结果表明嘌呤有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌呤和两个嘧啶两两相等的结果,形成了碱基配对的概念。

他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。

有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺嘌呤—胸腺嘧啶对竟然和由3个氢键连接的鸟嘌呤—胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌呤的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。

经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖—磷基团交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。

下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。

DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势。

器官移植术的发明

人的死亡常常是因为某些器官受到了不可逆转的致命伤害,功能丧失。如肾脏由于得了肾炎等严重的肾病,使肾功能全部丧失而不能生成尿;还有冠心病、肝癌等最终都可造成器官的功能丧失而死亡。所以,多年来人类一直梦想能通过器官移植来延长寿命。

在古代玛雅人的典籍中,就曾有更换内脏以求起死回生的记载。我国的《聊斋志异》中也有陆判“易心换头”的描述。的确,如能摘除丧失功能的器官,换之以健康的异体器官,这对抢救某些危重患者的生命来说,不仅是一种妙法,而且是一种极其重要的途径。近几个世纪以来,人类曾在动物身上进行器官移植的各种实验,但却屡遭失败。而在人体进行器官移植,大约是在600年前,印度的外科医生用臂部的皮瓣造鼻成功了。1905年,出生于法国的美籍医生卡雷尔(1873~1944)研究了器官移植,他当时认为人体器官离开机体仍然可以存活,任何人体器官都可以取下培养,然后移植到他人身上,这是把人体看成是像机器一样的系统。后来发现了人体的排异作用,证明这是不完全对的,但毕竟器官移植受到人们的关注。在1922年~1933年间,苏联人费拉托夫(1875~1959)提出了组织相容性理论之后,器官移植的成活率提高了。

20世纪40年代,美国遗传学家斯内尔选中了“老鼠组织移植与排斥”这样一个冷门课题,开始致力于异体器官移植和组织“排异”现象的研究。他与英国科学家高拉合作,在美国缅因州巴尔港杰克逊实验所,日复一日,年复一年地探索着。终于在1948年,他们公布了一个重要发现:老鼠体内有一种特殊的系统,可以成功地识别自身组织与异己组织,对自身组织能够接受、相容,对异己组织不能相容,给予排斥。这就是所谓“组织相容性抗原系统”。老鼠的组织相容性抗原系统由其遗传基因决定,这种基因被称为“H2系基因”。

同类推荐
  • 美德培育指导(学生素质规范教育)

    美德培育指导(学生素质规范教育)

    每一朵花,都是一个春天,盛开馥郁芬芳;每一粒沙,都是一个世界,搭建小小天堂;每一颗心,都是一盏灯光,把地球村点亮;每一个故事,都是一对翅膀,伴我们勇敢飞翔!孩子的幼年时期在其整个人生成长阶段非常重要,这一时期他们的认知、心理开始成长,开始形成自身的价值观,其人格和习惯也开始逐渐形成。因此,阅读适合他们年龄段的教育故事尤其有意义。本选题紧紧围绕素质教育的基本结构,结合青少年的发展特点,全面阐述素质教育,包括机遇、健康、美德、命运、能力、文明等方方面面。
  • 兽神·入世之初

    兽神·入世之初

    异位面伦达大陆,众神征战;兽人诸神中的监督和审判之神忽而特陨落,神性流落凡间。出生于道格族犬人部落的道格拉斯获得了一丝神性。因早产而先天孱弱的道格拉斯,在冥冥中受到神性的指引,为了变得强壮起来而走出部落。道格拉斯想要加入兽人大军,却阴差阳错地成为人类商队的一员。在半兽荒原中,商队与半兽人起了冲突。在生死存亡之际,道格拉斯意外激活体内的远古血脉和神性而幸免于难。刚刚逃过一劫,道格拉斯又遭遇了可怕而强大的黑暗魔法师……
  • 倾斜的天空

    倾斜的天空

    一个人没有妈妈可不可能?不可能,除非这个妈妈不要你。一个人没有爸爸可不可能?不可能,除非这个爸爸不要你。一个人过年可不可能?不可能,除非这个日子能从日历中撕掉。可是,如果妈妈不要你,爸爸不要你,地球也不能因为你的原因把这一天跳过去不算,你将如何度过这一天?我已决定做我想做的任何事,从这个春节开始……
  • THE HORSE AND HIS BOY (英文朗读版)

    THE HORSE AND HIS BOY (英文朗读版)

    《纳尼亚传奇》系列作品对后世作家影响深远,包括《哈利波特》系列的作者J·K·罗琳都曾表示自己深受C·S·刘易斯作品的影响。随着《纳尼亚传奇》系列故事改编成电影,全世界更多观众和读者开始认识这部不朽的作品。穿梭在一个又一个的纳尼亚冒险故事中,这绝对是你一生难忘的神奇旅程……
  • 麻龟警长破疑案

    麻龟警长破疑案

    本书共收入了作者近年来精心创作的29个小故事。这些故事分别讲的是在动物界发生的形形色色的疑案、谜案,以及这些案件的侦破过程。麻龟警长凭借认真负责的敬业精神,依靠丰富的科学知识,通过缜密的逻辑推理,抽丝剥茧,使这些疑案、迷案的真相大白于天下,惩治了邪恶,伸张了正义,教育了大众,维护了和谐的生活环境。阅读这些小故事,不仅可以愉悦身心,而且可以增长知识,还可以在潜移默化中学习逻辑思维方法,提高能力。
热门推荐
  • 我真不是霉神

    我真不是霉神

    【沙雕交流群:587303389】灵气复苏,万物灵长。这是一个楚生凭借着一手怼人,掏棺材的绝活,过上了升职加薪,当上CEO,迎娶白富美,走上人生巅峰的故事。…………作者:大家书荒可看《遮天》《神墓》《大王饶命》《仙逆》《一念永恒》……这些全部都不是作者自己写的!
  • 武侠三千年

    武侠三千年

    三千年江湖风雨何时休,一代新人换旧人。这里有民国的血雨腥风枪林弹雨和民族浴火重生的家国情怀;这里有万国来朝,天佑大明的权利纷争,武林争雄和剑气纵横;这里有东华门外唱名方为好男儿的逍遥仙。这里有以天下为棋局风云变幻的道统之争,英雄与豪杰并起的盛世大唐。这里有玄门兴起,魔帝出世,修仙问道的文人雅士求长生的故事。这里还有“秦王扫六合,虎视何雄哉!”的霸气绝伦和“海外寻仙药,反手断长生”的决绝气魄。更有远古时代神话传说,人神杂居的神仙大劫和洞天福地大破灭的上古元凶。
  • 怒斩苍穹

    怒斩苍穹

    “天若欺我,斩碎就是……”凡世少年破格选入天下第一修仙宗派——缙云宗。本应风光无限,却无法突破修仙初阶!难道一辈子是修炼的废才了吗?但为何脑内总出现不属于自己的记忆呢?要是这些记忆是真的便好了……重铸道基、真龙之血,记忆中的自己十年修炼飞升成仙!这个传奇能重现吗!
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 新知识图书馆:不容忽视的食品安全

    新知识图书馆:不容忽视的食品安全

    在人们的第一印象之中,营养、美味等这些美好的词语似乎正在逐渐远离被我们称之为食品的那些东西。在这种种问题的困扰之下,人们不得不重新审视食品安全问题,不得不将保障人类的食品安全提上议事日程。因为食品安全不但关乎着每个人的生命,还关乎人类的未来。
  • 盛明贤王

    盛明贤王

    历百般磨难,破万重心机,少年世子一朝封王。勇冠九边平胡虏,谋动朝野匡社稷,搅动京华风云,续写盛明乐章。
  • 云家有女嫌富爱贫

    云家有女嫌富爱贫

    你看我长这么好看,你怎么能欺负我呢?哦,你好像长得比我还好看。天哪,你怎么长得比我还好看。以后不许给别人看,只能给我看。……主子,你的高冷掉了你好烦啊……苍天可鉴,我家主子没遇见你之前不是这样的。
  • 情悦若愚

    情悦若愚

    孟若愚,既大条又心细的矛盾IT男,贱起来让人想抽他,认真起来自己都害怕,谈起恋爱来哟,还挺man的。封擎月,除了姓还是自己的,什么都不是自己的,有时候觉得连自己都不是自己的。性格是:没有人性。从不知道什么时候开始,没了人类最基本的性格。当两情相悦,到底谁才是大智若愚的那个?——————狄狄很早很早很早……写的小文,纯温馨治愈系,无渣无虐无极品,没有恢弘场面,只有沁入心田的暖~喜欢的可以看着玩儿,当送给大家消遣的礼物(o^^o)谢谢大家支持狄狄的《重生90之全能痞女撩霸少》么么~(o^^o)
  • 妖孽王爷王妃哪里逃

    妖孽王爷王妃哪里逃

    白柒:“这世界不属于我的,我要走,谁都拦不住”白柒穿越到异世,慢慢的变强,看她傲世四国,如何让世人皆知。 “不允许,你属于我的,”一个男人 他宠她入骨,爱他入骨,已经无法自拔了。但他伤她,杀她,囚禁她。 两人走去何方?
  • 感动青少年的100个感恩母爱故事

    感动青少年的100个感恩母爱故事

    这套感恩书系正是我们需要的心灵“慧眼”,它像一架显微镜,于平凡的生活小故事中让我们发现爱的真谛;它是一块点金石,让我们在普通生活的点滴中发现爱的璀璨光芒;它是一台心灵的热感仪,无论多么细微或深沉的爱和善良,它都可以敏锐地帮助我们感触到。阅读了它,我们就可以从批评中品享到关切;阅读了它,我们就可以从轻轻的埋怨中体味到温暖和幸福;阅读了它,我们就可以在霜雪中眺望到春天的阳光;阅读了它,我们就可以在风雨中意想到彩虹的华美。