登陆注册
3504500000021

第21章 海水的主要理化特性(1)

表层水与底层水的水温差异

全球海洋中海水温度的变化幅度大致在-2℃~33℃之间。其中,表层海水的水温变化幅度最大,大约是在-2℃~33℃之间;而底层水的水温变化幅度较小,通常多维持在0℃~6℃范围内。

表层水温度最高的区域为北纬5°~10°海域,该海域的部分海区,如波斯湾,夏季的表层水温有时可高达33℃,岸边浅水域的表层水温有时甚至能达到36℃。

表层水温最低海域为南极海域,其中威德尔海的长年水温一般都低于0℃,最低时为-2℃。北冰洋是全球纬度最高的海域,大约有2/3的海域表层长年冰冻,其余的海面大多也漂浮着冰山及浮冰,整个北冰洋中仅有巴伦支海由于受北角暖流的影响所以长年不结冰。北冰洋从海面到100~225米深的表层水长年水温一般都在-1℃~-1.7℃之间,从100~225米到600~900米之间的中层水,由于受大西洋暖流的影响,水温多保持在0℃~1℃之间。北冰洋沿岸地区大多为冻土地带,永冻层厚度一般都可达数百米。

表层水温季节变化幅度最大的是中纬度海域,一年之中最高水温有可能达到30℃,而最低水温则可能低于0℃,年水温差可超过30℃。而赤道海域和极地海域水温的季节变化幅度都比较小,年水温差一般很少能超过10℃。

底层水占海水总量的75%以上,其水温长年多维持在0℃~6℃之间,其中,有大约50%左右的深层水长年水温仅有1.3℃~3.8℃,只有极个别的海域底层水温会低至0℃。在大洋深处的海盆中,地壳的热量可以对底层水的水温产生一些影响,但至多也只能使底层的水温上升0.5℃左右。

温跃层

大洋中的海水,温度垂直分布存在着典型的三层式结构。

上层为混合层。其厚度大约在20~200米,不同海域厚度不同。混合层上下温度比较均匀,但表层温度存在比较明显的昼夜变化与季节变化。

中层为温跃层,在温跃层内,随水深的变化海水温度急剧下降。温跃层在不同海区分布深度不同。在南北信风带海域,温跃层多出现在200米左右水层在长日照海域,昼夜温跃层多出现在6~10米水层,而季节温跃层多出现在30~100米水层。温跃层的厚度一般都不太厚,通常只有几米至几十米,但其温度变化幅度却非常大,在低纬度海域可以从20℃~30℃急剧下降为3℃~6℃。

温跃层并不是在所有的海域都存在,高纬度海域由于表层水温长年都比较低,与底层水的水温差别不是太大,因而很少出现温跃层。

底层为低温层。在大洋深水区以底层水的厚度最大,温度变化幅度也最小。大洋底层水的温度一般都保持在0℃~6℃范围,即使是热带海域,1500米以下的水温也很少能超过3℃。但水温低于0℃的底层水分布区域也不是很多。

温跃层的成因

温跃层的形成原因大致上有3种。一种是随寒流携入的低温水,由于比重较大,会下沉至高温水的下部,形成较为稳定的低温水团,在冷水团与其上方暖水团的界面处存在较大的水温差,可形成稳定的温跃层。第二种是季节温跃层的形成,即表层海水受季节性气温的影响水温升高,由此而形成的暖水团,因密度变小而稳定存在于其下方温度较低的水团之上,两个水团的界面处存在较大的温差,形成季节温跃层。季节温跃层一般多生成于中纬度海域。第三种是昼夜温跃层的形成,由于表层海水白天受太阳光辐射的影响水温升高,形成的暖水层,也可稳定存在于其下方温度相对较低的水层之上,两个水层的界面处形成昼夜温跃层。昼夜温跃层一般多生成在比较浅的水层中,而且不太稳定。

影响海水密度的主要因素

海水密度是指每单位体积海水的质量,常用单位为“克/立方厘米”或“克/毫升”。人们习惯上常将海水密度称为海水比重,一般多用海水比重计进行测量。海水的平均密度一般多在1.025~1.028克/毫升之间。

海水密度主要受盐度、温度和压力的影响,在其他两个因素不变的情况下,盐度上升则密度增大,温度上升则密度减少,压力增加则密度增大。

海水的密度由于海域的不同、深度的不同以及水温和盐度等的不同而各不相同。一般地讲,沿岸水比外海水的密度低,表层水比底层水的密度低。这是因为沿岸海水由于受气温、大陆径流、降水等气候因素的影响,密度变化较大,而且其密度一般都低于海水的平均密度;而大洋深层的海水因水温低、压力大,其密度一般都高于海水的平均密度。降水能使海洋表面的海水盐度降低,再加上太阳的辐射还能提高表层海水的温度,这也是为什么海洋表层水比深层水密度小的原因。此外,深层水的压力比表层水大,压力也会造成深层海水的密度增大。

全球海洋中以南极海域的海水密度最大,这不仅是因为其水温低,而且因该海域海水容易结冰,海水在结冰时会释出部分盐分,致使该海域的盐度随之增高,密度变大。

纯水在4℃时密度最大,为1克/毫升。而海水密度最大时的水温却与其盐度有关。例如:盐度18的海水在0.12℃时密度最大,盐度35的海水则在-3.52℃时密度最大。海水结冰后体积约增加9%,密度也相应减少9%。

密度跃层

海水的密度跃层一般都是在海洋中两个密度不同的水团界面处形成的。例如,当表层海水因大量蒸发而导致盐度增加,致使其密度增大时,或者因温度降低而导致其密度增大时,一旦密度大于其下层水团,即开始下沉,直至抵达密度相同的水层后才停止下沉并四下散开。

这种因密度大的海水不断下沉,密度小的海水不断上升的海水运动,可促使海水不停地进行垂直交换,形成上升流与下降流,最终有可能形成上下两个密度相对稳定的水层。在两个水层的界面处往往存在着较大的密度差,形成密度跃层。在密度跃层内,随水深的变化,海水密度急剧增大。此外,某些陆间海如果周围有较多的河流注入,河流携入的大量淡水因密度小于海水而浮于海水表层之上,久而久之即可形成两个密度不同的水团,上层水团盐度低密度小,下层水团则盐度高密度大,由此而形成的密度跃层一般都比较稳定,黑海即属于这种类型。

温跃层也属于密度跃层的一种。

盐度是指海水中溶解的无机盐数量,常以其含量的千分值(‰)来表达。例如:海水中含盐量为30‰,则称其盐度为30;含盐量为35‰,则称其盐度为35。

全球海洋中海水平均盐度为35,各海域略有不同。

其中大洋水的盐度较高,在33~37.5之间;近岸水域由于受降水和大陆径流等的影响较大,盐度要低些,并且不同海区间的差别较大。

全球各大洋中,以北大西洋亚热带海域盐度最高,约为37.5;北冰洋盐度最低,为31~32。盐度最高的海为红海和波斯湾,正常情况下为40~42;盐度最低的海为波罗的海,中部海域的海水盐度通常在6~8之间,而北部和东部海域的海水盐度只有2,几乎与淡水等同。波罗的海四面皆为陆地所包围,仅西侧有3条又窄又浅的海峡与大西洋连通,与外海的水交换量不大,加上流入该海的河流有250条之多,平均每年注入的淡水多达472立方千米,并且当地气候凉湿,蒸发量少,这些因素的共同影响造成了其海水盐度极低。此外,黑海的盐度通常也只有18左右,基本上为半咸水。

海水盐度的测量

海水盐度的测量,过去通常多使用比重计来测量其比重,或者用化学分析方法测量其氯度(即氯离子含量的千分值),然后再换算成盐度。换算方程式较多,有简有繁,比较常用为:

盐度=(比重-1)×1305

盐度=氯度×1.8066

现在虽然有了专门用于测量盐度的仪器,如折射式盐度计、电导仪等,但通过测量比重再进行换算的方法,仍是经常使用的方法。

同类推荐
  • 美丽的自然奇观(青少年成长必读·科学真奇妙丛书)

    美丽的自然奇观(青少年成长必读·科学真奇妙丛书)

    人类有多少好奇,世界就有多少奥秘。亲爱的孩子们,你们有多少想象,世界就有多少精彩。来吧!让我们一起去解读大自然的神秘物语。 翻开《美丽的自然奇观(青少年成长必读·科学真奇妙丛书)》一书,它将带领我们去领略世界各地的绮丽风景。
  • 神秘百慕大

    神秘百慕大

    关于百慕大的离奇传说很多,全世界都注视着这一海域的每一桩事件,失踪事件都有一个特殊规律:飞机和轮船迷航,呼救,然后迅速消失,连残骸都找不到。为了探索其中的奥秘,从20世纪50年代起,许多科学家就付出全力以解开20世纪自然界这个最大的疑团。但种种研究始终在机械的故障、粗心的驾驶、雷击、风暴、海啸等假说上回转,虽费尽心机,却无法自网其说。
  • 史前文明:重复的时代(青少年科学探索营)

    史前文明:重复的时代(青少年科学探索营)

    本书介绍了一亿年前的人造地图、七十万年前的月球开采、两千年前的化学电池、矿石中奇特的人造物、埃及的远古飞机雕模、英国的巨石阵遗迹、荒凉高原上的文明遗迹、远古时期的地下古隧道、神秘的史前文明古物、哥斯达黎加巨型石球等内容。
  • 宇航:开启新时代(青少年科学探索·求知·发现丛书)

    宇航:开启新时代(青少年科学探索·求知·发现丛书)

    《宇航:开启新时代(青少年科学探索·求知·发现丛书)》从基础宇宙知识、宇宙的奇思妙想、宇宙运用和探索宇宙等方面,向读者展现了人类进军浩瀚宇宙的不懈努力,向青少年读者揭开宇宙的神秘面纱。
  • 中国最美的地质公园

    中国最美的地质公园

    《中国最美的地质公园》既是一部旅游地学佳作,又是一部独具特色的科普读物。作者吴胜明对中国最美的地质公园进行了科学的分类欣赏,以一个资深的地学专家和一位热爱大自然的普通行者的双重身份,以科学和人文的视角、至情至性的表达方式,更像一个智慧的导师,带领读者一边走,一边欣赏,在领略美丽的外在景观的同时,感受到科学家亲近自然、研究自然这一过程的内在美,富有感染力。
热门推荐
  • 魔道争锋

    魔道争锋

    加入邪派合欢宗,修炼双修秘法,穆强一步步成为万古邪皇,统帅群仙争霸。
  • 国际大奖童书系列:贝丝的快乐农场

    国际大奖童书系列:贝丝的快乐农场

    姑妈无微不至的呵护让九岁的贝丝脆弱、敏感,没有个性,以至于失去了自我。一次意外事件,姑妈不能再照顾她了,她被送到乡下姨婆家。贝丝再也不能衣来伸手饭来张口,一到那里,她不但要自己照顾自己,还要做家务,没人把她当小孩看待。但是,没想到独立自主的生活让贝丝很快发生了变化,她还爱上了新家庭,她不再是过去的自己了……
  • Frivolous Cupid

    Frivolous Cupid

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 出走

    出走

    宋雅琴手上提着一只包,走出家门,走出楼道,走出小区大门,一副急匆匆的样子,不像离家出走,反倒像是一个赶火车快要误点的倒霉女人。宋雅琴脚下走得疾,一颗心却迟疑在脚步后面,急切地期盼着男人孩子从身后赶上来,拦着她的人,截住她的包,而后她就有一个台阶下,跟着他们一块回家去。也就是说,宋雅琴不想真的离家出走,只是想跟男人孩子赌一口气。到了宋雅琴这个年龄的中年女人,情况大致都差不多,跟男人结婚过了二十多年,彼此心里都有厌倦对方的时候;管孩子管了十几年,孩子总有反抗与不满的时候。往日里,男人的厌倦与孩子的不满,是分开来的,很少交织在一块同时发作出来。
  • 梧桐将许暖流年

    梧桐将许暖流年

    如果说,江梓墨的出现,是许若醴稍显灰暗的青春岁月里,命运吹过来的一道和煦温暖的春风。那许若醴的出现,绝对就是江梓墨傻白甜了十六年的生活里,命运吹过来的龙卷风!但二十六岁的江梓墨清楚地知道,他有多么希望许若醴这道龙卷风,能再次出现在他的生命里。大家好,我的新书《寒星拥入怀》已于2019.7.7于红袖首发,娱乐圈文,很好看,欢迎大家移步支持!
  • 泠之有衍

    泠之有衍

    传闻,冥界来了个倾国倾城的美人儿。这美人儿上能上阵杀敌,下能撩天撩地撩冥帝……符泠:冥帝,听说你喜欢我?某纯(腹)情(黑)的冥帝:泠儿,听说的事情一向不准,但现在……它准了。(甜宠文)
  • 灵芬馆词话

    灵芬馆词话

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 戏诸侯:把历史活成段子的春秋狂人们

    戏诸侯:把历史活成段子的春秋狂人们

    春秋年间,不管是英雄还是恶棍,都有把历史活成段子的特殊技巧。仅仅为了博得宠妃褒姒一笑,周幽王就在烽火台点火忽悠诸侯前来救驾?然而不作死就不会死,被幽王赶走的正宫申后从娘家搬了救兵收拾渣男和小三儿。这回狼真来了,再喊可没人信了……于是,列国争霸的春秋乱世就此开始。倒了血霉的郑庄公“难产”,妓院祖师管仲,爱上哥哥的文姜公主,丧家犬重耳、为了称霸天下装了九年孙子的“楚装王”……说尽春秋时期奇葩人、奇葩事,这些极品风云人物决定了历史!
  • 有爱无爱一身轻

    有爱无爱一身轻

    这是一本应对2008—2010年中国婚恋震荡危机的人生指导书。它集中反映了70,80后人群当下最热门、最聚焦和最棘手的婚姻、恋爱和家庭问题,分析爱情困惑,指点婚恋迷津,解决家庭危机,指导他们重新认识爱情、婚姻、家庭,重新了解、理解伴侣与自我,重新踏上情感路途,重新寻找与塑造更美好的爱情,婚姻和人生。