登陆注册
3435700000017

第17章 细胞和分子基础(5)

DNA连接酶不但在复制中起最后缝合缺口作用,在DNA修复、重组、剪接过程中也起缝合缺口的作用,在基因工程中,它作为重要的工具酶之一使用。

DNA复制发生在细胞周期的S期(DNA合成期)。细胞进入分裂期后,复制好的两个DNA分子分别参与形成染色体的两个单体。细胞分裂后期,每条染色体的两条染色单体各被纺锤丝牵拉,分别向细胞两极移动,随着胞体的分裂,复制好的两个DNA分子伴随着各自的染色单体进入两个子细胞。这样,遗传信息从亲代传给了子代细胞,保证了遗传物质数量的恒定性。

(三)基因的表达

基因表达是指生命过程中,储存在基因中的遗传信息,通过转录和翻译,转变成蛋白质或酶分子,形成生物特定性状的过程。

1.转录

以DNA为模板,在RNA聚合酶作用下合成RNA的过程称为转录。真核生物及人类的转录过程在细胞核中进行。

(1)转录过程转录过程就是DNA分子上的遗传信息传递到RNA的过程。转录时,细胞核中DNA分子的局部双链在酶的作用下暂时解旋,以其中一条DNA链(如3’→5’)作为RNA合成的模板链,按碱基互补配对原则(RNA中以U代T,和DNA的A配对),以四种三磷酸核苷酸(ATP、GTP、CTP、UTP)为原料,在RNA聚合酶的催化下(沿DNA3’→5’滑动)合成出一条单链的RNA,RNA合成方向为5’→3’。

转录终产物RNA包括mRNA、tRNA、rRNA,分别称为信使RNA、转移RNA和核糖体RNA。mRNA可进一步翻译出蛋白质。

(2)转录产物的加工和修饰新转录出的mRNA还须经过一系列加工、修饰过程才能变得成熟,具备正常功能。

(3)反向转录或逆转录大多数生物的基因是双链DNA。少数低等生物,如一些病毒称为RNA病毒,其遗传信息贮存在单链RNA上。1970年,Temin和Baltimore分别发现这类病毒的复制分两步进行。

第一步:以RNA为模板合成RNA-DNA杂化双链,催化这一步的酶叫反转录酶,从功能上更准确地称之为依赖RNA的DNA聚合酶。

第二步:以新合成的DNA链为模板,合成DNA双链。合成的DNA也可再作模板,生成RNA,原有的RNA链可被核糖核酸酶H(RNAaseH)水解。

这一重大发现的意义在于揭示了复制不单以DNA为唯一模板,遗传信息不一定都从DNA流向RNA。RNA也可作模板,使DNA从RNA中得到遗传信息。这是一种复制的特殊形式,过程和DNA→DNA复制一样,也是从5’→3’延长,只不过模板不同,碱基配对也和复制相似,只不过用U代替了T。试管内加入RNA模板(包括从高等动物组织提取的RNA),在有反转录酶和原料dNTP存在下,也可合成DNA,这种DNA称为cDNA,即互补性DNA。

2.翻译

在mRNA指导下的蛋白质生物合成称为翻译。翻译过程实际上就是把DNA转录到mRNA的异常信息“解读”为多肽链上的氨基酸种类和顺序的过程。翻译过程十分复杂,需要mRNA、tRNA、rRNA、核糖体、有关酶以及蛋白质辅助因子的共同作用,还需要各种活化的氨基酸作为原料,并依赖ATP、GTP提供能量。整个过程在细胞质中进行,可分成以下几个步骤。

(1)氨基酰-tRNA的形成氨基酸在氨基酰-tRNA合成酶和ATP的作用下被激活,并与相应的tRNA结合成氨基酰-tRNA复合物。

(2)肽链合成起始在起始因子(IF)作用下,核糖体的小亚基结合到mRNA的起始密码子AUG上。同时,具有起始作用的蛋氨酰-tRNA(原核生物为甲酰蛋氨酰-tRNA)通过tRNA的反密码子UAC配对结合上去,然后,核糖体大亚基与小亚基结合成起始复合物。

(3)肽链的延长核糖体有两个氨基酰-tRNA的结合位点——P位(肽位)和A位(氨酰基位)。起始的蛋氨酸-tRNA结合在P位,随后,根据A位上的密码子,带有相应反密码子的氨基酰-tRNA能正确进入A位。在转肽酶催化下,P位上的氨基酰基结合到A位的氨基酰-tRNA上,形成二肽酰-tRNA。

(4)肽链的终止核糖体沿mRNA由5’端向3’端不断移动,当A位出现终止密码时(UAA、UAG或UGA)时,不再有任何氨基酰-tRNA进入A位,此时释放因子(RF)结合上去并发挥作用,使肽酰-tRNA酯键断裂,核糖体释放出多肽和tRNA,并与mRNA分离,进一步解离成两个亚基,肽链合成完毕。

转录和翻译是基因中的遗传信息表现为特定性状的两个功能过程。它们紧密联系,转录在细胞核中进行,翻译在细胞质中进行。

五、基因重组和基因工程

基因有相当的保守性,亲代性状可传给子代。但是,也并非一成不变。DNA分子中可能发生某一核苷酸的缺失、置换,引起移码突变等。此外,尚可发生基因交换。有的交换在同一染色体中,有的在两个染色体之间进行。甚至一个生物体的基因可以插入另一个生物体的染色体中,并在宿主体内进行复制、转录及翻译,这就是基因重组。由此可见,基因重组是生物界固有的现象,且有很重要的意义,如物种进化、两性繁殖、病毒感染等过程中均存在天然的基因重组。

基因工程是指在试管内应用人工方法进行基因重组,把重组的基因导入细胞或细菌,进行复制、转录及翻译。利用这一技术,可以扩增DNA,生成蛋白质,或是创造生物新品种;也是研究基因表达及表达调控等理论课题的重要方法。因此,基因重组及基因工程,成为生物化学与分子生物学研究的热点。

(一)基因重组

基因重组有多种形式,如转化、转导及转位等。

由外来DNA引起生物类型改变的过程称为转化。例如致癌病毒上存在一些特殊碱基序列,称为癌基因。致癌病毒感染宿主细胞以后,癌基因随病毒基因而整合到宿主细胞的染色体中,癌基因可被转录,并翻译成蛋白质,这些特殊蛋白质能使正常宿主细胞转变为癌细胞。常用的宿主细胞为3T3纤维母细胞。把癌基因导入细胞后,重组入宿主细胞的染色体DNA中。正常的3T3纤维母细胞转化为具有恶性肿瘤行为的癌细胞,转化细胞能在琼脂中生长繁殖,能在无胸腺鼠中长成肿块,而正常细胞不能。

当噬菌体(或病毒)DNA整合进入宿主染色体中后,在利用宿主的代谢体系而进行复制时,有可能使邻近噬菌体DNA的宿主细菌基因一起被复制,成为病毒DNA的一部分,并一起组装入病毒内。当子代病毒再感染其他宿主病毒时,这段宿主来源的基因,称为转导基因,它可以像噬菌体DNA一样,一起重组入宿主的染色体中。

转位是指一个或一组基因从一处转位到基因组的另一个位置,这些游动的基因称为转位子。免疫球蛋白的生成就是通过基因转位和重组而产生的过程。

(二)基因工程

基因工程是按人的意愿用分离纯化或人工合成的DNA(目的基因)在体外与载体DNA(质粒、噬菌体等)结合,成为重组DNA,以此去转化宿主(细菌或其他细胞),筛选出能表达重组DNA的活细胞(称转化子),并将其加以纯化、传代、扩增,成为克隆,以此获得大量相同的DNA分子。因此,基因工程也称为基因克隆。

所谓克隆就是同一副本或拷贝的集合,相当于无性繁殖系;获取同一拷贝的过程称克隆化。从大量群体细胞中分离出单一细胞类型,这样产生的很多相同细胞称为克隆细胞。例如从由免疫小鼠脾细胞(能产生抗体)和骨髓瘤细胞(能在体外无限制繁殖)融合成的杂交瘤细胞群体,分离筛选出分泌某一特异性抗体称为单克隆抗体。同样,从众多不同的分子群体中分离到很多相同分子即分子克隆。现代生物技术所谈的分子克隆是指DNA(分子)克隆。

基因工程的基本过程可概括为分、切、接、转、筛5个阶段。

1.分——载体和目的基因的分离

(1)载体常用的有质粒、γ噬菌体、M13噬菌体等。

质粒是环形双链DNA,大小约为数千个碱基对,存在于大多数细菌的胞质中。每个细菌能容纳的质粒数目称为拷贝数。拷贝数越大,当然对基因工程的生产应用越有利。质粒易于从一个细菌转移入另一个细菌。质粒上往往带有一个或两三个抗药性基因,这就有利于应用它的抗药性进行下一步的筛选工作。理想的质粒,对同一种限制性内切酶只有一个切口。

质粒和噬菌体在与其宿主菌共同培养中可大量产生,但它们的DNA与细菌DNA在大小、密度、碱基组成上都有差别。因此经过破碎细菌、密度梯度离心等方法,可以获得纯化的载体DNA。

(2)目的基因可直接从染色体DNA中分离,可人工合成,也可以从mRNA合成cDNA而产生。第四种方法是组建“基因文库”,即把染色体总DNA用一种限制性内切酶随机切割成数以万计的片段,然后重组到载体中,得到数以万计的混杂质粒。然后用探针技术把目的基因“钓”取出来。

2.切——限制性内切酶的应用

限制性内切酶犹如基因工程的手术刀,它能识别核酸分子某些碱基序列并加以切开。限制性内切酶切过的DNA,有两种不同类型的切口。一种称平端切口,即在同一水平上切断DNA的两股链;另一种为粘端切口,即两链的切口错开2~4个核苷酸。

3.接——把载体和目的基因接合成体外重组体

用同一种限制性内切酶切割载体及目的基因后,无论产生的是平端切口或粘端切口,都可以用DNA连接酶把载体和目的基因连接起来。

4.转——重组体的转化

重组载体如系大肠杆菌质粒,则可在0~4℃用CaCl2处理大肠杆菌,以增大其细胞膜的通透性,然后将CaCl2处理过的细菌与重组质粒进行短暂温育,使质粒透入菌体。将DNA片段导入宿主细胞以改变其某些性状,进行转化。

重组载体如系噬菌体DNA,可进行体外包装,将其包以γ噬菌体的外壳蛋白(头部),并使其含有尾部蛋白,成为有侵染力的噬菌体,以导入宿主细胞。亦可用CaCl2处理宿主细胞,将重组DNA直接引入细胞。以噬菌体DNA导入细菌引起的转化称为转染。

进行转化和转染宜选用不含限制性内切酶的突变菌株作为宿主,以减少外源性DNA被破坏清除的可能性。

5.筛——DNA重组载体筛选与鉴定

将重组载体引入宿主细胞,并将其初步扩增后,应加以筛选,以便筛出含目的基因的菌株,并鉴定之。确定克隆株后,即可繁殖菌株进行进一步的扩增。

根据重组载体的表型进行筛选是常用方法之一。可以利用载体质粒对抗生素的抗药性进行筛选。如质粒pBR322,由4362个核苷酸对构成,对四环素及氨苄青霉素均有耐药性。将此质粒导入对上述两种抗生素无耐药性的细菌后,则此细菌变成有耐药性了。这样宿主菌是否已转化,可在培养基中加入上述抗生素予以筛选;未转化的细菌被杀死,已转化的则生成菌落。

此外,也可以利用对营养素的依赖表型来筛选。例如,目的基因是亮氨酸自养型(leu+),可把重组体转化于亮氨酸异养型(leu)的宿主中,放在不含亮氨酸的培养液中培养。能长出菌落的,表示重组体已含目的基因,即用重组体leu+补足了宿主的leu-。而不含目的基因的质粒,却不能使leu-的宿主生长。

总之,基因重组技术发展十分迅速,具有产业化能力的基因工程正在各生物领域快速发展。基因工程可从分子水平改良现有的生物品种(如大肠杆菌),它将给生化药物、食品、轻工、化工等工业赋予新的生命力。此外,基因工程在疾病基因的发现、基因诊断(遗传病诊断)、基因治疗(利用基因工程向有基因缺陷的细胞补充相应功能的基因)和遗传病预防等方面都有广泛的应用价值。

脂类代谢

脂类是脂肪及类脂的总称。脂肪是三脂肪酸甘油酯,称三酰甘油也称甘油三酯。类脂包括固醇及其酯,磷脂及糖脂等。它们是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。

一、脂类的化学

(一)脂肪

脂肪是1分子甘油与3分子高级脂肪酸所形成的酯,故称三酰甘油,又称真脂或中性脂肪,其结构如下:

R1、R2、R3代表脂肪酸的羟基。若3个脂肪酸都相同,称为简单三酰甘油,如三硬脂酰甘油、三油酰甘油等。若含有两个或3个不同的脂肪酸则称为混合三酰甘油。自然界的脂肪中,多数是混合三酰甘油的混合物,简单三酰甘油较少,仅橄榄油和猪油含三油酰甘油高达70%。

(二)类脂

类脂是性质与脂肪类似的物质。主要有磷脂、糖脂及固醇类等。

1.磷脂类磷脂有磷酸甘油酯和神经磷脂等。磷酸甘油酯主要有磷脂酰胆碱、磷脂酰胆胺、磷脂酰丝氨酸、双磷脂酰甘油和磷脂酰肌醇等。

磷酸甘油酯是磷脂酸的衍生物。甘油中的两个羟基和脂肪酸结合成酯,第三羟基被磷酸酯化生成磷脂酸。磷脂酸再与其他醇羟基化合物连接,即组成不同的磷脂。

磷酸甘油酯分子中,两个长脂肪酸链为非极性,其余部分为极性,所以磷脂是两性脂类。它是生物膜的主要成分,在脂类的消化吸收及脂类的运输等方面起着非常重要的作用。

同类推荐
  • 中医整体观:天人相应

    中医整体观:天人相应

    《中国文化知识读本:中医整体观·天人相应》是一套旨在传播中华五千年优秀传统文化,提高全民文化修养的大型知识读本。该丛书在深入挖掘和整理中华优秀传统文化成果的同时,结合社会发展,注入了时代精神。书中优美生动的文字、简明通俗的语言,图文并茂的形式,把中国文化中的物态文化、制度文化、行为文化、精神文化等知识要点全面展示给读者。点点滴滴的文化知识仿佛颗颗繁星,组成了灿烂辉煌的中国文化的天穹。《中国文化知识读本:中医整体观·天人相应》介绍了天人相应与生命整体观、养生方面的知识。
  • 专家诊治血管疾病

    专家诊治血管疾病

    为您详细解答关于血管疾病的各种疑难杂症;本书尽选常见病、多发病,聘请相关专家编写该病的来龙去脉、诊断、治疗、护理、预防……凡病人或家属可能之疑问,悉数详尽解述。此书10余万字,包括数百条目,或以问诊方式,一问一答,十分明确;或分章节段落,一事一叙一目了然。
  • 紧急救助员实用应急技术

    紧急救助员实用应急技术

    紧急救助员实用应急技术紧急救助员实用应急技术紧急救助员实用应急技术紧急救助员实用应急技术紧急救助员实用应急技术
  • 泌尿系统疾病诊治绝招

    泌尿系统疾病诊治绝招

    本书旨在总结临证有效方剂,而不以学术探讨为目的,因此,药物组成、用量或比例均严格忠实于原方创制者,不做任何调整或补充。凡药涉巨毒,方涉峻烈者,或有其他注意事项者,均在【说明】项下对其详加说明。这些方剂屡试屡效,有较高的实用价值。本书集众家之所长,聚新方于一鉴,可供医务工作者、科研工作者、医学院校师生研究、学习、使用。
  • 养生革命1:不生病的习惯

    养生革命1:不生病的习惯

    《养生革命1:不生病的习惯》是一本有关科学养生方面的畅销书。作者试图解决人们提出的“怎样养”的问题,力求使您在最短的时间内获得最大收益和最佳效果。可以说,只要您掌握了怎样养生的方法,也就掌握了通向未来长寿之路的金钥匙。
热门推荐
  • 吾乃小妾:王爷夫君请绕道

    吾乃小妾:王爷夫君请绕道

    一朝穿越沦为小妾,估计这是她最背的一次吧!什么?王爷夫君居然是个冰块,她可不想被冻死,于是继续作死:王爷夫君可是在等奴家?偏偏某人就是不肯给她一纸休书,于是她就在作死的道路上一去不回头……“哎哎,你那什么表情?”某女警惕地抱着自己。可是某人根本就没有理她的打算:“爱妃不要误会,不把你盯紧点只怕你又不见了!”某女欲哭无泪啊!看来她此生与那逍遥的生活无缘了!读者讨论群:544707180
  • 快穿之沙雕的任务

    快穿之沙雕的任务

    新手一枚,望亲们多多包涵(づ ̄3 ̄)づ╭?~
  • 殇蝶迷途

    殇蝶迷途

    “找你二十七块三毛,谢谢惠顾,欢迎再来。”宋晓的脸上挂着热情的微笑。暂时没有新的客人过来结账,她可以稍微休息一会儿了。她看了看手表,已经是晚上九点二十分了。还有不到一个小时就下班了。她的丈夫今晚不用加班,说好过来接她下班,两人一起去吃夜宵。宋晓有些期待。最近丈夫工作很忙,早出晚归,他俩已经好几天没一起吃饭了。此时,手机忽然震动起来,来电是一个陌生的手机号码。“你好。”宋晓接通了电话。“嫂子,是我!霍奇侠!”
  • 新纪来袭

    新纪来袭

    诡异的元气,疯狂变异的生物,让人变为丧尸的病毒战争,人类该何去何从,又由谁来引领新的纪元?新书《全球武道进化》! 全新的世界,不一样的故事,欢迎阅读。
  • 指挥官请签收你的舰娘

    指挥官请签收你的舰娘

    一支烟,一杯茶,一个图纸刷一天。当李晨迷迷糊糊刷了一天的金凯旋图纸,睁眼一看已经穿越异界,流落荒岛。就在这时一个有着猫耳的神秘小女孩出现在了他的身旁:“指挥官,为了港区的未来和大家的微笑,今天也请多多努力哦。”于是为了守护小女孩的微笑,照顾港区中的舰娘们,李晨女装前进中。
  • 初恋你,余音绕梁

    初恋你,余音绕梁

    一个玩笑似的诺言,两个不相干的人相遇。一个是心理咨询师,一个能看透人心的霸道总裁。两个人心理之间较量,谁能取胜?“丁俊逸,你猜我喜欢你吗?”“喻初音,我喜欢你。”两小无猜,青梅竹马,十五年的相守,两年分别,你还爱我吗?“白小白,你就告诉我你还爱我吗?你他妈就告诉我你爱不爱我!”“爱”从小我就望着你,看着你,守着你,可你的眼中就只有他。你到底什么时候才能看到我?“楚莱,等下辈子我有资格一定娶你。”
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 保标

    保标

    陆然是个保镖,因为一次意外,女朋友受枪伤失踪,他心灰意冷决定不再干这个职业,没想到有人找上门,还带来他女朋友的消息,让他不得不重操旧业
  • 消失的花裙

    消失的花裙

    少年成人,考入名校,成为J市中心医院心理科医生。在案件的侦破过程中,黄雷婷与杨念初陷入爱河,而杨念初发现黄雷婷的母亲黄楠,即是当年与父杀害自己母亲的凶手......
  • 毒医狂后

    毒医狂后

    她被嫡姐囚禁,日日以毒物为食,十年时间,她被炼成至毒无比的人形蛊。直到这日,嫡姐的纤纤玉手插入她的心口,生生摘下她鲜活的心脏!他是二十一世纪第一神偷,被一块神秘黑玉吸引,穿越时空坠入异世。诡异术士将他封印在黑玉之中,植黑玉入她的身体,一身二魂,她乱葬岗离奇复活!至此,一个煞神归来的传说,华丽的拉开了序幕!