登陆注册
2999900000011

第11章 海洋物质探秘(2)

在光合作用过程中,平均每1个磷原子需要16个氮原子和106个碳原子来构成有机物,同时释放出276个氧原子。而当浮游生物死后这个过程就向逆方向进行,溶解在海水中的氧气将有机物氧化,释放出二氧化碳、硝酸、磷酸等。

这些元素间的关系体现在海洋中微量营养素的分布上。这个值称为“莱德菲尔比”。如果这一平衡被破坏,浮游植物的生长繁殖将受到阻碍。

在氮、磷之外还有许多元素是必不可少的。比如对于硅藻和放散虫等硅酸质壳动物,硅元素的稀缺会阻碍其生长发育。

近期的研究还表明,铁和亚铅等微量重金属也是必不可少的,如果缺少则会影响浮游植物的增殖。

海洋包含的“铁”

美国加利福尼亚州莫斯·兰丁实验所的约翰·马丁是位海水微量元素分析专家,他在如何采集样本和分析方法方面都有贡献,并彻底查明了钴、锰、银、铅等元素的分布,并且最终成功地分析了铁元素。

铁元素在地壳中约占5%,但是由于海水的“净化”作用,在海水中的浓度极其小。

采取海水样本时必须驾船出海,而船是钢铁制成的,难免到处是铁锈,固定采水器的缆绳也是钢铁的,必须十分注意由这些产生的杂质。

1988年,马丁终于证明,铁的分布为营养盐型,表层较少,随着海水的增加而增加。

海中铁含量最早对铁元素的测定是在阿拉斯加湾进行的,结果表明在海水表层由于生物活动导致稀缺的氮、磷等元素的浓度仍然较高,但是铁元素的浓度却极低。

是不是根据利比希最小律,由于铁的缺乏而妨碍了浮游生物的繁殖,导致大量的磷和硝酸剩余呢?

铁是继氮、磷、钾之后又一种必需的营养素,是合成与光合作用紧密相关的细胞色素酶的必要元素。由于陆地的土中含有大量的铁,所以从没有缺少的情况发生。

但是海水的情况就不同了。由于铁在海水中迅速被氧化成三氧化二铁而产生沉淀,所以必须注意铁元素不足的情况。

马丁运用他多年来研究海洋微量元素的经验采集到无杂质的海水样本,并对有铁和无铁情况下浮游植物的繁殖速度进行了比较。结果表明,有铁情况下的繁殖速度要快得多。

不同海域浮游植物铁元素对比实验证明,生物按照莱德菲尔比顺利生长繁殖的必要条件是对于1个单位的磷要有1/200单位的铁存在。

南极海和赤道附近海域的表层海水的营养素非常丰富。如果人为地向海水中增加铁元素,会不会加速这些海域的生物生育?

据估算,要令南极海表层的氮和磷全部被有效地利用,大约需要30万吨的铁,而这仅仅是大型油轮用铁量的一半。

马丁想到:“如果适当地将大气中的多余的二氧化碳经浮游植物转化成有机物积蓄在海洋中,就可以降低大气中的二氧化碳的浓度,防止温室效应影响地球。”

马丁的这一设想的有效性和对生物圈的影响在全球都引起了广泛的争议。

多数专家学者认为这个方法不大可能成为解决地球温暖化的救世主。现在这个方法正在进行小规模海上试验,并在研究它的波及效应。

海雪

让我们想象乘坐潜水艇潜入海底的过程。随着深度的增加,光亮开始减弱,渐渐变成一个深蓝色的世界,最后四周一片漆黑。

坐在艇内向窗外望去,偶尔会有亮点一闪而过——是发光生物们。

打开探照灯,窗外竟然漂着雪花一样的物质。当潜水艇下降时雪花自下而上运动,当潜水艇上升时雪花自上而下运动,如下雪一样。这就是“海雪”。

雪花各式各样,大多如鹅毛大雪,一块块凝结在一起,似乎一触即化。这些物质有的是浮游生物的尸骸被鱼类吞食后排出的粪便,这些物质再被分解,就变得面目全非;有的是陆地上随流而来的矿物颗粒球。

海雪给深海带来季节变化这种海雪漂荡在海水中,承担着将海水表层生产的物质搬运到深海的重要任务。同时它也影响着海洋微量元素的分布。

浮游生物的残骸在中、深层海被氧化分解,按照莱德菲尔比产生氮、磷、碳等元素。因此中、深层的海水的营养素比表层丰富。

不仅是海水中的营养素受海雪的影响,其他多种微量重金属也受海雪的影响而变化。

海雪中除了有机物,大部分是硅藻等的硅酸盐外壳或者圆石藻和有孔虫的碳酸盐外壳。这两种成分的比例随海域和深度的不同而不同。而那些同生物无关的物质主要是来自陆地的土壤粒子和海水中的沉淀物。

那些同生物生长密切相关的颗粒的沉降量随表层海面中生物生产力的高低不同而差异明显。海雪的化学成分也随海域和季节的不同而变化。

北太平洋和南极海的海雪中硅藻偏多,而北大西洋的海雪中石灰质的圆石藻偏多。有机物的比例一般随深度的增加而减小,有的在中途就发生分解。

尽管如此,到达海底的海雪中仍然含有许多新鲜的有机物,是深海生物高营养的食物。另外,海雪的沉降量随表层生物的生产季节而变化,从而也使得海底生物可以感觉到季节的变化。

海洋和大气的气体交换

动物的呼吸作用就是吸入氧气,排出二氧化碳的代谢活动。吸入的氧气用于分解有机物以产生能量。如果把呼吸看成这么一种化学反应,那么,中深层的海水里的生物,像鲸鱼,一样也会呼吸。

在第三章就解释过,格陵兰海和南极附近的海洋表层水在冬季冷却后密度会变大,导致下沉。这时1千克的海水通过大气的气体变换大约含7毫升的气体(水温越低可以溶解的氧气越多)。

这就像鲸鱼刚刚吸足空气准备下潜时的状态。当氧气在有机物的分解过程中渐渐被消耗时,作为分解反应的产物,二氧化碳的浓度开始升高。

鲸鱼这时分解的是磷虾等食物带来的有机物。海水氧化的则是从表层落下的海雪。总之,沉下的时间越长氧气就越缺乏,而二氧化碳的含量则在不断增加。

然后沉下的海水再次涌上海面和大气接触,将过剩的二氧化碳排出,再吸进缺少的氧气,就像鲸鱼的呼吸作用一样。

这种同生物活动和海洋循环同时进行的海洋同大气的气体交换对大气中的氧气和二氧化碳的浓度影响很大。大气中的二氧化碳只占0.035%,比氮气和氧气少得多,所以受海洋的影响很明显。

海洋表层生产的有机物的一部分作为海雪沉入海底,在海底被分解放出二氧化碳的过程以及碳酸盐甲壳溶解后形成钙离子和碳酸根离子的过程就像深海中的香槟工厂一样。

现代将这一过程称为“生物泵”。由于这个过程的作用,大海中的二氧化碳含量约为大气中的2倍。海水的循环和气体的交换在对封闭在格陵兰和南极海冰床中的气泡(古代的气体)进行分析后发现,12,000~24,000年前的冰河时期的大气中的二氧化碳浓度只有现在的2/3。冰河时期陆地上的植物比现在少,减少的部分应该全部被海洋吸收了。

可能当时的海洋循环和物质循环与现在不同,当时的海洋中深层的二氧化碳含量可能比现在更高。

假设浮游植物全部消亡,那样将会如何?储藏在海洋中的二氧化碳将随着海水的循环排到大气中,大气中的二氧化碳会升高。

那么,如果海洋的循环停止后又会怎样?海洋深层的营养素不再循环到海洋表层,浮游植物数量会显著减少。

这样光合作用生产的有机物也会减少,结果导致空气中二氧化碳含量增加。地球上由于过度燃烧各种化石燃料导致二氧化碳含量增大,引发温室效应。在解决这个问题上海洋起了重大作用。

化学追踪

我们明显地感到黑潮、亲潮等表层海流的流动,但却不知道海洋深层的水也在流动。

事实上海洋很广阔,海水的流动有时形成旋涡,又随时发生变化,很难用简单的物理方法将其用平均循环图的形式表述。

比较经典的方法是根据密度大的海水将下沉,从而导致含氧量降低,而随着有机物的分解硝酸离子和磷酸根离子等营养素的浓度会增加这一原理来推测海水的流况。一般海水向氧气含量减少的方向流动,或者说向营养素浓度高的方向流动。

根据这个原理我们可以发现大西洋、南极海、印度洋、太平洋的深层水年龄依次增加。

根据这种化学成分的分布情况同地球的流体理论的结合,麻省理工学院的H.斯顿梅尔和哥伦比亚大学的W.S.布洛卡画出了海洋循环图,但是这也只是把握了一个大概而已。

同类推荐
  • 战车王国

    战车王国

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,科技的发展、人们生活水平的不断提高,为我们青少年的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,传播科学精神,提高青少年的科学素质,是我们全社会的重要课题。科学教育,是提高青少年素质的重要因素,是现代教育的核心,这不仅能使青少年获得生活和未来所需的知识与技能,更重要的是能使青少年获得科学思想、科学精神、科学态度及科学方法的熏陶和培养。科学教育,让广大青少年树立这样一个牢固的信念:科学总是在寻求、发现和了解世界的新现象,研究和掌握新规律,它是创造性的,它又是在不懈地追求真理,需要我们不断地努力奋斗。
  • 有趣的发现和发明(谷臻小简·AI导读版)

    有趣的发现和发明(谷臻小简·AI导读版)

    本书是一本科普读物,以故事的形式,分别介绍了阿基米德与投石机、伽利略与望远镜、帕斯卡与液体压强等科学发明与发现。
  • 海洋中无处不在的科学(认识海洋系列丛书)

    海洋中无处不在的科学(认识海洋系列丛书)

    海洋中发生的自然过程,按照内秉属性,大体上可分为物理过程、化学过程、地质过程和生物过程四类,每一类又是由许多个别过程所组成的系统。对这四类过程的研究,相应地形成了海洋科学中相对独立的四个基础分支学科:海洋物理学、海洋化学、海洋地质学和海洋生物学。
  • 生命的自我调适:体育百科

    生命的自我调适:体育百科

    体育,顾名思义,是指利用身体活动来进行教育,以达到增强体质、提高运动技术水平、丰富社会文化生活的目的,它是一种有目的、有意识、有组织的社会活动。一个国家体育活动的发达与否,已经成为衡量一个国家社会发展水平的一项重要指标。体育还可以培养竞争意识。一个人,必须有一种动力,一种不愿落后的信念,方能取胜。本书以通俗易懂、简洁明了的语言,对体育常识、体坛轶闻等作了一些详尽的描述,对各项影响较大的体育盛会、全民热衷的体育运动作了深入浅出的介绍,从而让读者对体育事业有一个全面的认识与了解。
  • 世界神秘现象

    世界神秘现象

    在无边的黑暗里,众多的未解和神秘静静地守候,等待那支探索火炬的亮起。幽暗的地宫、离奇的谜案、远去的传奇、隐藏的真相……那些沉睡在未知世界里的人和事在渐行渐近的好奇下,缓慢开启岁月的封印,褪去寂寞的外衣,展示出一幕幕尘封已久的画面……探索发现系列,宛如一个色彩斑斓、光怪陆离的万花筒,真实再现了大干世界的神奇瞬间,精彩诠释了人类文明的隐秘片段。神秘的、奇幻的、悬疑的……令人目眩神迷,欲罢不能。娓娓道来的传奇故事,弥足珍贵的彩色图片,打造出一席华美的文化盛宴。《图说天下·探索发现系列》编委会编著的《世界神秘现象》是“图说天下·探索发现系列”之一。
热门推荐
  • 最让你受益一生的哲理故事(智慧背囊)

    最让你受益一生的哲理故事(智慧背囊)

    《智慧背囊》系列丛书包含有亲情故事、友情故事、情感故事、心灵鸡汤、哲理故事、成长故事等,囊括青少年成长阶段所必然经历的各个历程,从生活到学习,从内心到情感。
  • 快穿任务之炮灰来逆袭

    快穿任务之炮灰来逆袭

    孟离围观异宝出世成了炮灰,又成了穿梭各个世界替人逆袭的任务者。觉得功法不如意?自创!没有称心的武器?也有!没有合适的机缘?都有!(注:本文无cp。)
  • 快穿系统男神笑一个

    快穿系统男神笑一个

    别人家的爱豆:沉鱼落雁,闭月羞花自己家的爱豆:自恋毒舌不说,竟然还藏了一个男人!粉丝们却不知,一代影后曾经无辜遭死被无良系统拉去做任务,好嘛,为了能重回世界,她忍。叛逆少女、温柔女神、悲情千金、末世妖精各种类型都能驾驭,却不曾想,一不小心在三千世界里陷入美色,无法自拔。纯洁干净vs傲娇腹黑,小奶狗vs小狼狗,该选哪一种美色?黎雪表示两个都想要。“宿主,难道你不要我了吗?”“不要让我亲自动手,嗯?”黎雪躲在角落里瑟瑟发抖,麻麻,我要回家!第一次写快穿文,请多关照。文笔稚嫩,欢迎吐槽。男女主身心干净,1v1~
  • 文学与电影改编研究

    文学与电影改编研究

    在视觉文化与后现代文化相互裹挟的今天,文学与电影呈现出了与以往不同的复杂关系。当前关于电影研究最令人兴奋的前景并不在于出现了某种对所有电影或小说进行理解的新方式和新方法,而是在跨文化的视野之下,所有文本都可作为“互文”加以观察,所有的观看都是重读,所有的改编都是重写,甚至可以试图将改编视为一种文学批评的方式,从而为重新审视改编电影与文学的关系提供了另一种可能性。
  • 一世相思一瞬欢

    一世相思一瞬欢

    她,本应是大梁的名门闺秀,难料家破人亡,为了保全性命被送出家门;他,大梁的皇亲国戚,是天下尽知的风流才子,是万千少女倾慕的对象。她,学不会低头,酒量不好却宿醉在街头,手无缚鸡之力却爱打抱不平,流连风月之地;他,文韬武略,应为天人,姬妾成群。他费尽心思,许下万里江山,只为红颜一笑;她,哭过,笑过,爱过,恨过,甘愿让自己沉浸在幻梦中。梦醒时分,她望着那双她永远忘不了的眼,忆起那一段层遗失的记忆:初见,他便成了天下唯一能解她心意之人;再见他甘愿为她抛弃天下;他为了她,杀出一条血路,只为再见她一面,再唤她一声妻,与此同时,他也是她此生绝无可能原谅之人,她看着他亲手将自己变成家破人亡的境况,她看着自己至亲至爱之人被诛杀,被流放,她的所有泪与痛,尽是拜他所赐。回望当初,她当如何?进还是退?爱还是恨?忆,还是忘?
  • 钻到地心去探险

    钻到地心去探险

    晚上,仰望苍穹,星光点点,每一个闪烁的星点就是一颗恒星,每一颗恒星都有行星围绕着它,而无边无际的宇宙中有着无数的星球。可是,宇宙究竟有多大呢?有边际吗?是否还存在另外数不清的宇宙呢?
  • 半壁玲珑

    半壁玲珑

    前世他们堪堪错过须臾,相爱至深的两个人至死未能相见,一个在枯等里溘然逝去,一个在血光滔天里香消玉殒。再生再世,她被转换了记忆,失去了半颗心,性子疏离冷漠。他转世成了当朝太子魏祁月,用撒娇耍赖去融化她那颗冰封之心。此时朝廷皇位之争严峻,明争暗斗生灵涂炭,他们经历各种考验,两颗心渐渐靠近,前世的过往却以误会的方式登场。随着朝廷的斗争,拯救子民于水火,他们解开了心结和误会,却难逃彼此再次错过的命运!爱情断肠如殇,舍去所有,性命或者自由,也不可成为一只影子,徘徊在你左右。三界再也不能阻挡她,可是没有了他,她依然无处可去!
  • 没来的人请举手

    没来的人请举手

    这是一本让你恐惧又让你着迷的短篇惊悚集,当你翻开这本书,恐惧就会渗入你的每个发根,让你交出全身的颤栗,昏暗中已有无形颤抖的手高高举起,你是否已经看到?
  • 特种兵之霸气无双

    特种兵之霸气无双

    在一次战斗中受到刺激而唤醒了霸气能力,拥有见闻色霸气,武装色霸气,霸王色霸气三种霸气能力,从此,他逆势而起,却遭遇了诸多顽强特种部队狙击和考验。孤狼特别突击队、红细胞特别行动组、狼牙特种旅黑鹰突击队、降救援突击队、火凤凰突击队。强者如林,王者争锋,才能成为终极国之利刃,问鼎兵王。
  • 思考术:解开你与生俱来的能量密码

    思考术:解开你与生俱来的能量密码

    本书由现代成功学奠基人、世界著名励志大师拿破仑·希尔所作。全书从十个角度入手,阐述了作者本人对于正确对待这些情境的真知灼见。书中每部分均分为15个条目,并辅有解读与实操指南,重点在于引导读者突破思维的桎梏。