登陆注册
3502800000028

第28章 风与建筑工程

一般人很少想到建筑工程与风有什么密切关系,其实土木工程中的各种建设,无论是房屋、道路、桥梁、水坝、堤防、港湾等等,都要承受着来自大自然强风的严酷考验。在1940年,美国华盛顿州的塔科马海峡大桥在未达其设计风速一半的天候条件下(风速18~20米/秒),因桥面主梁断面的空气动力不稳定特性而造成结构溃塌。这一事件引起了研究者对于土木结构与空气互制现象的重视,开始在风洞内进行结构缩尺模型实验,可称为是近代风工程发展的肇因。

风工程泛指风力与空气扩散在土木相关学门方面的应用。一些重要的风工程应用领域包括:自然风场(紊流大气边界层流场)的特性;钝体空气动力学;高层建筑受风行为及耐风设计;桥梁空气动力特性以及桥梁耐风设计;巨型烟囱、高塔、桁架等特殊结构的耐风设计;一般住宅与厂房等低层建筑的抗风设计;高层或大型建筑周围的环境风场;各类型工厂以及区域性的污染源排放与扩散;强风对行车安全的影响;招牌、路标的抗风设计;风浪互制现象;海域平台的风力效应;沙、雪的飘移;建筑物的通风散热,等等。

桥梁受风的动力效应

由于近代桥梁施工方法的进步与高强度材料的研发,再加上悬索支撑桥梁具有地标、美观、大跨径,及降低对周围环境的冲击等优点,使得此型桥梁的数量日益增加。悬索支撑桥梁由3种基本构件组成:桥塔、桥面版和缆索。缆索的功能是将加于桥面板的部分力量传递给桥塔,然后再经桥塔传递于基础上。悬索支撑桥梁型式可分为2大类,分别是斜拉桥和悬吊桥。

斜拉桥的主跨径约在数百至1000米间,当跨径越长所需斜拉缆索越多,导致靠近桥塔的桥面板断面的压力越大,因此斜拉桥最大跨径很难超过1000米。而悬吊桥跨径就远大于斜拉桥了,由于悬索支撑桥梁主跨径甚长,为减轻结构的重量,其结构系统趋向采用细长化断面,再配合高拉力钢索及桥塔来传递垂直力。也正因为如此,此型结构系统受风的敏感性,随着跨径的增加而大幅提高。尤其自1940年塔科马海峡大桥受风吹袭倒塌以后,长跨径桥梁受风影响的问题逐渐受到重视。

那么,桥梁受风的动力效应是怎样的呢?一般而言,桥梁的气动力效应可分为5种:扭转不稳定、涡致颤动、风驰效应、颤振及抖振。

扭转不稳定是属于一种静态式的破坏现象。当桥梁断面受风时,桥面版会产生一个扭转角,而此角度会产生额外的扭力。在某一风速之下,当扭力和扭转角的斜率在某一临界值时,施力在桥面上的扭力会使桥梁结构无法抵抗而产生不稳定的现象。以近代桥梁而言,发生这种扭转不稳定现象的概率比较低。

涡旋是由于气流环绕物体表面,并且由此断面的边界分开所引起的涡旋现象,造成物体上下侧压力的不同,产生振动的现象。通常这种现象对钝体断面(如箱形)影响较为显著。涡致颤动会对桥梁产生周期性振动,一般不会造成桥梁结构的破坏。不过当涡致颤动发生时,对于桥面板及桥塔则会造成很大的影响,且此现象一般发生于较低风速(15米/秒以下),应注意此效应长期作用下,可能引起的材料疲乏现象。目前并没有确切的理论模式,可以预测桥梁断面的涡流颤动行为,通常以风洞试验配合数值分析来计算颤动的振幅;若此振幅过大,则须修改断面形状或加扰流板,或加调质阻尼器来降低振幅。

风驰效应的原因,来自于结构体垂直向振动速度,与逼近流场的速度合成,造成风向角改变;而风向角的变化造成物体不对称性,引起在垂直向的上升力随之变化。此上升力的变化造成气动力的阻尼现象,造成结构体位移反应加大,进而再改变风向角,如此持续的互相作用,使得位移反应更加剧烈。风驰效应为一种不稳定振动,一般对于细长结构才会产生,特别对于断面型式为矩形,或受冰封的缆索等非流线型结构影响更大。以缆绳为例,为了避免风驰现象,可于缆绳表面作特殊处理或加装阻尼系统,以降低缆绳的振动。

抖振与大气中乱流有关。这是由于逼近乱流的速度扰动,对结构造成的一种不稳定载重,而使结构体产生振动的现象,因为乱流程度随时间和空间改变,故所造成的效应也将沿着车行方向而改变。抖振除与乱流特性有关外,也和桥面板的几何形状及桥梁基本振态有关。桥梁的抖振效应通常不会导致桥体破坏,倘若振幅过大,行车可能感到不适。此外,在长期作用下,桥梁材料可能因此而疲乏。由于桥梁断面都不是单纯几何形状,因此上述气动力效应的检核分析多需通过风洞试验所采集的气动力数据后才能进行。

建筑物的风力效应

地球表面因为接受太阳辐射量的不一致,造成大气温度和压力的不平衡,而空气便会由高气压处流向低压处,因此形成“风”。此外,加上地球的自转、云层的覆盖、雨水的凝结、地形的变化,以及地表附近的温度差异等因素,使得地表的风场结构变化莫测。在距离地表几百米到1000米范围之内,大气的运动受到地表边界的影响,称之为大气边界层。因为人类的活动大多局限于大气边界层之内,故大气边界层与人类的居住环境、生活质量有着密不可分的关系。

地表附近的水平风速会随着高度改变,这是因为接近地面的风场受到地形和地物的影响而风速较小,高空的风速不受阻碍而风速较大,风速分布随高度的增加由小而大,逐渐增强至较均匀的风速分布,这个高度就是边界层的厚度,从数百米到1000米不等,视地表粗糙程度而定。都市地区因建筑物的高度较高,边界层的厚度较大;平坦开阔的地区,边界层的厚度较小。

都市地区中的风场,受到密集排列的建筑物影响,属于非稳态紊流流场,影响参数包括风速、风向、建筑物几何外形、邻近建筑物的相关位置等,是许多因素交互影响而成的复杂流场。在英国与美国,都曾发生行人被建筑物周围的强风吹袭跌倒而受伤的案例,这种影响地表附近行人的风场会直接影响到建筑物的使用,与其周围区域的规划,因此设计建筑物时必须加以注意。

建筑物的迎风面墙承受气流的直接冲击,所受的压力为正向压力,但在建筑物背风面及侧面因为气流加速通过,根据流体力学中的伯努利定理可知,流速大的地方压力小,故建筑物背风面及侧面所受的压力低于大气压力,为负压力,也就是说建筑物表面受到吸力效应。斜顶式建筑物屋顶的风压与屋顶的倾斜角度有关,角度大时,屋顶与迎风面墙相同,压力为正压力;屋顶角度小时,屋顶压力为负压力,房舍的屋顶可能会被掀翻。建筑物的表面如果有门窗、玻璃等易受风力破坏的同护结构,则必须先了解建筑物表面风压的分布,才能预防建筑物的破坏。

风力与建筑物

风力是一种流体(空气)通过阻碍物(建筑结构)所产生的空气动力现象,与阻碍物的几何形状有密切关系。概括来说,物体的形状越是流线,其所受风力越小;只不过,一般的建筑物与桥梁很难具有流线的外型。同样地,对于某些柔度特性明显的建筑物与结构体,会进一步放大建筑结构所受的风力。

对一般的建筑物而言,地震力是主要的设计考虑,但是当结构物的高度需到达一定程度,如高层建筑、巨型烟囱和高塔等,风力的影响就不容忽视,并且逐渐取代地震力,成为主要的水平设计载重。

高层建筑需要考虑的使用功能性,远比一般结构物复杂,在风力的影响上也不例外。一般而言,高层建筑在设计规划时,应列入考虑的风力影响有4项:①高层建筑结构系统所承受的整体风力;②帷幕外墙所受的局部风压;③建筑风摆造成的居住者舒适性问题;④环境微气候,即邻近的地面风场环境所造成的行人舒适性问题。

从高楼结构设计的观点来看,作用于高层建筑上的风力可分为顺风向、横风向与扭转向风力,各个风向的风力又可分为平均风力与扰动风力。顺风向风力主要由风场中的阵风造成,对于基本造型近似矩形柱体的建筑物,大体上可以通过理论与实验数据得到合理的评估。

在建筑设计上,重要的横风向扰动风力主要来自流体通过建筑物时,发生的流体分离与涡散现象所造成的周期性作用力。当建筑物的高宽比与柔度都很大时,在设计风速之内可能会发生结构共振现象,造成过大的振动反应。这个涡散分离现象引发的结构共振,与建筑物的几何造型及结构动力特性有密切关系,目前并无妥善的分析模式可供解析。

对于一般几何造型的建筑物,扭转向风力的影响小于顺风向及横风向风力。由于扭转向风力也是源自流体分离,故亦无分析模式。所幸的是,横风向与扭转向风力对一般高层建筑的影响有限,主要的设计风力仍由顺风向风力控制。

近几十年来,建筑风工程已有长足进步,常见建筑物(近似长方形,高宽比小,高度在数十米)所受的风力多能由风力规范计算得知。虽然近年来计算流体力学(CFD)进步很快,对于航天、汽车、机电方面的应用都有极大贡献,然而,应用于建筑物的复杂风力作用尚需一段时日。现阶段探讨建筑风工程,仍以缩尺模型作风洞物理模拟最为有利。

执行风洞试验时,需妥善考虑缩尺模型与实际高层建筑之间的模拟相似率,唯有如此,风洞缩尺实验结果才能确实应用于原型结构。设计高层建筑的风洞试验,需满足流场以及结构空气动力(或结构空气弹力)的模拟相似性。建筑风工程探讨的是建筑物在强风作用下的结构反应;以风洞进行缩尺模拟时,需要正确模拟:①自然风场特性;②高楼几何特性;③正确的长度缩尺、时间缩尺与速度缩尺;④正确的高楼空气动力效应;⑤对于少数超高层建筑,需正确模拟建筑结构的空气弹力相似性。

同类推荐
  • 名山之谜:探秘中国十八座名山

    名山之谜:探秘中国十八座名山

    《名山之谜:探秘中国十八座名山》主要内容:名山收藏了自然景观的神奇、帝王的朝拜、文人雅士的风情。是它们造就了名山的光辉和深度。名山是钟灵毓秀、让人叹为观止的、美丽绝伦的景观,千百年来就一直真矗立在天地之间。
  • 2012:那些被证实了的预言

    2012:那些被证实了的预言

    如果你不知道诺查丹玛斯,那你最起码要知道《诸世纪》他是一位神奇的预言家,它是一本神奇的预言书,近两个世纪以来,这个世界上所发生的重大的事件,几乎都被他和它的书所言中(包括法国大革命的成功、希特勒的出生、911事件等)。如果这仅仅是巧合,那我们该如何解释这种巧合?
  • 巅峰地球:地球之最大观(青少年科学探索·求知·发现丛书)

    巅峰地球:地球之最大观(青少年科学探索·求知·发现丛书)

    《巅峰地球(地球之 观)》将带你走进地球上那些你未曾踏人的世界,为你讲述自然界中千姿百态的奇特景观,感受大自然的神奇魅力。《巅峰地球(地球之 观)》内容涉及海洋、自然、动物、生命、科学、建筑、历史、艺术、文化等诸多领域,向读者展现了地理之最、海洋之最、旅游之最。本书由钟哲平编著。
  • 透视人体怪象(科学探索的真相)

    透视人体怪象(科学探索的真相)

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,社会的进步、科技的发展、人们生活水平的不断提高,为我们读者的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,增强科学探索精神,这是科学普及的关键。
  • 走进信息化时代(趣味科学馆丛书)

    走进信息化时代(趣味科学馆丛书)

    “趣味科学馆”丛书,是一套自然科学獒读物。丛书包罗科学的多个领域,涉及“信息化”、“绿色革命”,“发明”、“生态资源”、“航天”、“军事”、“日食、月食”等当下热门关键词。这本《走进信息化时代》由刘芳主编,为该系列丛书之一,有引领读者关注热点、提升其认识水平的现实价值。《走进信息化时代》内容涉及信息化领域的各个侧面,并进行合乎逻辑的排列组合。文字浅显易懂、生动活泼。
热门推荐
  • 诸天记行

    诸天记行

    电视剧、电影、动漫、小说……当熟悉的旋律响起,童年记忆涌上心头:放学冲回家中、与父母抢遥控器、在父母保护眼睛的教训下、搬着小凳子坐在电视机前追剧……蓦然回首,李杨不敢相信自己竟站在湖心小筑,而面前任性的女孩叫幽若……而故事,要从一场你绝对想不到的奇葩面试说起……PS:书友群496127055
  • 云中仙人

    云中仙人

    一个下凡体验妖生的妖怪,爱笑俗世中人,活着的时候,总不知惜。
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 我永不妥协

    我永不妥协

    现在站立在你面前的是,罗马的新传奇,维罗纳的皇帝,米兰城的万人迷,巴塞罗那王朝的奠基人。尼·弗朗西斯科·贝拉尔多只想追逐那个最好的自己,这是一个属于世一卫的故事。
  • 大管家茶客途

    大管家茶客途

    故事以茶馆为背景,男主被迫利用女主找到老人查柯图的藏宝图,但是无意中却进入老人设计的圈套,开始了贩卖茶叶的生意。找到六大茶区的制茶秘籍,辅佐家族成为显赫一方的大商贾是男主的目标。想要完成一系列的任务,必须通过识茶、采摘、制茶、品茶、卖茶等等考核,才能晋级功力...
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 废都之书

    废都之书

    “天上的诸神,你的战士已经尽了全力,仍不能击败敌人,”将军说:”你的子民将沦为奴隶,你的庙宇将不再有人供奉,七月王朝帝国的光辉将永生永世的沉沦于黑暗,这将是光明大陆上最黑暗的一天,它代表着上千百年的辉煌,走向了灭亡!”
  • 无上至尊神话

    无上至尊神话

    新书发布《唯我帝至尊》,有兴趣的可以去观看一下。这本无上至尊神话的大结局可以在新书里面看到。由于第一次写作加上经验不足以及生活的事情这本太监了,还有十万存稿没发,实在抱歉。
  • 花颜策

    花颜策

    太子云迟选妃,选中了林安花家最小的女儿花颜,消息一出,碎了京城无数女儿的芳心。传言:太子三岁能诗,七岁能赋,十岁辩当世大儒,十二岁百步穿杨,十五岁司天下学子考绩,十六岁监国摄政,文登峰,武造极,容姿倾世,丰仪无双。花颜觉得,天上掉了好大一张馅饼,砸到了她的头上。自此后,她要和全天下抢这个男人?---------------云迟:立在青云之端,学的是制衡术,习的是帝王谋,心中装的是江山天下,九重宫阙里,翻手为云,覆手为雨,执掌社稷朝堂,将自己修剪得无欲则刚。花颜:自诩是尘埃之下,有七情六欲,不喜天子堂,偏爱市井巷,踩着十丈软红,遍尝人间百态。觉得最好,莫过于青山绿水,你许我一生,我伴你一世。————————————————————————————————如果《妾本惊华》让您欢喜,《纨绔世子妃》让您热爱,《京门风月》让您留恋,《粉妆夺谋》让您不舍,那么,这本《花颜策》,我想,可以这样定义,它是一本每日写着,都会惊艳我自己的书。新的一年,新的开始,愿您与我一起,惊艳这本时光,温柔这段岁月。姑娘们,【收藏】+【留言】,我的文章,您的陪伴,明月静好,春风安然。
  • 炮灰攻略之男神驾到

    炮灰攻略之男神驾到

    【大大,想突破大乘圆满一步登天吗?你缺一个情劫。只要攻略下男神,得到情缘值就能度过情劫,升上上神。】想要一步登天做上神的顾忆,就这样被系统套路着踏上了‘渡劫’的道路。只是……【喂喂喂?大大,说好的攻略男神,你为什么要拆CP?】顾忆义正言辞的说:“拆CP攻略男神两不误!”