登陆注册
3373600000019

第19章 物理大发现(11)

1903年,卡门通过了博士学位答辩,而后赴巴黎学习考察。不久,普朗特从哥廷根寄邀请信,要卡门回去担任实验室的助手,参加哥廷根第一个风洞的筹建及“齐柏林号”飞艇的设计。卡门愉快地接受了这一邀请,从此他开始了作为航空科学家的生涯。

哥廷根风洞是为“齐柏林号”飞艇设计服务的;卡门协助普朗特完成了德国第一批空气动力学实验。同时,他还担任力学课的教员。哥廷根的学习、研究和生活对于卡门说来是十分珍贵的。

当时,一批科学明星荟萃于哥廷根。卡门置身于这些科学大师之中,眼界大开。尤其是希尔伯特与克莱因这两位各有所长的数学大师,对卡门产生了深远影响,使卡门横跨两个基本学科——纯粹数学和应用数学。

卡门投入科学研究初期,正是物理学的革命时期。放射性的发现正在揭开原子奥秘的帷幕。

1911年到1921年间,普朗特正在研究边界层分离现象。他设计了一个水槽,用以观察流体经过圆柱体后面的分离现象。水槽里的水流不断发生摆动,普朗特对此并不注意。卡门思想敏捷,善于洞察事物本质,当他插手这一实验之后,立即加以深入研究。

实验显示,流水在圆柱后形成两排交叉的涡旋。卡门对此进行了数学分析,从理论上证明只有交叉排列的涡旋才是稳定的。他在三个星期内完成了两篇出色的论文,这两篇论文成为流体力学中一次重大发现的标志。

流体经过一个障碍物,会在它后面留下两排交叉的涡旋,这一现象早已为人们所知,但是,卡门第一次从理论角度阐明了这一现象的实质。由于这两排交叉的涡旋好像是大街两旁的两排街灯,于是人们把这一现象叫做“卡门过街”。

在人类的建筑史上,因忽视“卡门过街”的作用,曾发生过一起惊心动魄的事件。事情是这样的:在美国西雅图附近有一座横跨塔科马海峡的大桥,它是一位著名建筑师设计的“艺术杰作”。1940年11月7日,8级狂风大作,在强烈的“卡门过街”的作用下,大桥发生了急剧的扭曲、振动,结果在不到一个小时崩塌殆尽。人们最终意识到建筑设计必须考虑“卡门过街”的效应,因为一切建筑物都处于空气这一流体之中,风速过快时都会产生“卡门过街”现象。

卡门离开哥廷根前往亚琛任教时,已经奠定了他的基本流体力学理论权威的基础。不久,他担任亚琛工学院空气动力研究所所长。他在亚琛工作期间,组织并主持了三次国际应用力学会议。卡门和他的老师普朗特合作研究,突破了如今仍被人们视为流体力学最大难题的“湍流”问题,虽然这个问题至今仍困扰着人类,但“湍流”问题的研究在这一时期获得了第一次重大进展。卡门和普朗特的湍流理论,现在仍是工程湍流计算中的重要依据,成为流体力学的经典理论。

1929年卡门出任加州理工学院航空实验室主任时,美国的航空工业正处于蓬勃发展阶段。从1930年到1942年,经过12年的努力,卡门领导的加州理工学院航空实验室,已经成为国际流体力学研究中心。卡门在整个流体力学领域,指导了两代科学家和工程师,开拓了新领域,为航空技术奠定了扎实的科学基础。

1945年,卡门起草了一份关于航空工业发展必须依靠科学技术的报告。报告分析了两次世界大战中的人力、武器、科学技术的作用,还具体探讨了超音速飞行和火箭的技术问题,这篇报告对美国当局产生了非常深刻的影响。

在卡门的倡导、呼吁下,美国逐步成立了一些研究机构。1947年超音速无人驾驶飞机发展中心成立;1948年著名的智囊机构——兰德公司成立;1952年阿诺德航空工程公司成立;1957年成立了国家原子能委员会。到1957年,卡门的计划大多已付诸实施,火箭、导弹已经大量生产,超音速飞机横越大洋,人造卫星也已经围绕着地球运行。

第二次世界大战战火熄灭之后,卡门全心地致力于发展国际航空事业。50年代,卡门主持了两次国际航空会议,创建了国际宇航科学协会,成立了国际宇航科学院,推动了国际宇航事业的发展。

当时十分脆弱的中国航空事业也得益于卡门的指点。1929年,卡门路经中国,建议在清华大学开设航空课程。抗战爆发后,清华大学创办航空系,卡门派他的弟子、航空技术专家沃登道夫来华担任该系的科学顾问。

卡门在加州理工学院时期,还培养了一批出色的中国科学家,他们之中有众人熟知的钱学森、郭永怀、钱伟长,以及美籍华人林家翘等。其中钱学森在30年代末期火箭技术还处于摸索阶段就与其他几位年轻科学家看到了这一技术的发展远景,成立了一个名叫“火箭俱乐部”的研究小组。这一小组后来发展为加州理工学院喷气推进实验室,成为全世界火箭喷气技术的一大中心。

卡门在漫长的科学生涯中,对流体力学、空气动力学,尤其是以此为基础的航空技术贡献卓著。他不仅是宇航工业技术的研制者,更是国际航天事业的组织者,他同时涉足理论和应用科学两大领域。直到70岁时,卡门还集中精力研究一门他所生疏的学科——燃烧学,他把燃烧化学与流体力学结合起来,奠定了现代燃烧理论的基础。

泡利不相容原理的发现

1900年4月25日,伏尔夫岗·泡利(1900~1958)生于奥地利首都维也纳。他的父亲做过医生,是一个有名的学者,后来担任维也纳大学胶体化学教授。泡利出生后接受过天主教的洗礼,教父是物理学家和哲学评论家厄恩斯特·马赫,因此泡利自幼就受到了良好的科学环境的熏陶。他在念小学时,学习成绩始终名列前茅。上中学后,课堂教学已经满足不了他的需要,他广泛阅读课外书籍,尤其喜欢自然科学。

中学快毕业时他得知,爱因斯坦发表了广义相对论,这在当时是一门崭新的学科,是物理学的前沿。他对此表现了极大兴趣,甚至在课堂上也在偷偷地阅读。他那时已掌握了高等数学,所以读过爱因斯坦的著作后,他感到眼中的翳障突然消失,一下子对广义相对论能够心领神会了。

中学毕业后,泡利决定攻读理论物理学。他进了慕尼黑大学,跟随良师益友索末菲。索氏当时在德国以至世界上都可以算得上一位最有声望的理论物理学导师,许多杰出的科学家,包括海森堡、贝蒂在内都出自他的门下。

在这里,泡利在索末菲教授的指导下,他的理论分析技术更臻成熟,他的非凡才华得以显露。在为《数学百科全书》撰写相对论综述之前,尽管泡利当时还不到20岁,可是已经发表过好几篇相对论的论文了,因此深得索末菲的赏识。

1921年,泡利以论文《论氢分子的模型》取得博士学位,从慕尼黑大学毕业。他的论文被认为是对于玻尔-索末菲量子理论应用问题的卓有见地的文章。

1922年,泡利离开慕尼黑大学,来到哥廷根大学——当时由玻恩和弗兰克领导的世界理论物理研究中心,担当玻恩的助手。在此期间,他结识了尼尔斯·玻尔。一学期后,他接受了玻尔的邀请,来到了哥本哈根理论物理研究所工作。这里自由的学术空气和讨论方式,加之名师的指导,使泡利学到了科学的思维方法,锻炼了纯熟的数学技巧,弥补了他不擅长实验、动手能力不足的弱点。此后不久,他又去了汉堡大学担任编外讲师。

从1923年到1928年这5年中,泡利一边进行教学工作,一边开始从事量子物理学的研究。他专攻的首要课题就是反常塞曼效应。反常塞曼现象深深地迷住了他,在他的宿舍里,桌子上、床上到处都是演算的草稿,窗台上老是放着未吃完的面包,他从早到晚不上运动场,也不去音乐厅,总是写啊,算啊,可是却一直没有头绪,因此他总是整天愁眉苦脸的。

当然,泡利没有把反常塞曼效应的问题完全解决。事实上,当时波动力学还没有发展起来,要想完全解决这个问题也是不可能的。但是,他把塞曼效应的研究用来正确地解释光谱线的精细结构,这是电子所具有的一种在经典力学中找不到的新性质。为了解释这种精细结构,泡利用一个新的只能取两个值的量子数来描述电子,这个新量子数就是电子自旋的投影,他后来因此发现了电子自旋。这个新量子数的存在和泡利所做的解释都得到了证实。

新量子数的发现为泡利最重要和最著名的发现做了准备。1925年,这方面的研究终于使他发现了自然界的一条基本规律——泡利不相容原理。在泡利提出这个原理之前,朗德、索末菲和玻尔等人都相信碱金属原子中被价电子围绕的那部分组成,具有角动量,这角动量是磁反常的原因。至于这部分组成为什么具有角动量和磁矩,则谁也说不出道理。

泡利不相容原理认为:一个原子中不能有两个或更多的电子处在完全相同的量子状态。应用这个原理可以很好地解释原子内部的电子分布状况,从而把由玻尔的原子理论不能圆满解释的元素周期表的分布规律说得一清二楚。这个重要发现使泡利在20年后,即1945年,获得了诺贝尔物理学奖。

从1928年起,他担任了慕尼黑联邦工业大学的理论物理学教授,他在这里一直工作到去世。近30年的时间里,他一直坚持不懈地刻苦钻研,他以自己非凡的智慧,凭借科学的预想和不断创新的精神攀登着一个又一个的科学高峰。

20世纪20年代物理学家们发现:在原子核放出电子的β衰变过程中,放射出来的电子所携带的能量,并不和原子核所损失的质量相对应。经测定,放出电子所带走的总能量要小一些,也就是说,在β衰变过程中有能量“亏损”的现象。

那么,这一部分亏损的能量到哪里去了呢?大家都知道,能量是不能创造也不能消灭的,只能由一种形式转化为另一种形式。面对这种情况,人们犹豫、彷徨。1930年,玻尔甚至准备放弃能量守恒原理,因为他认为,能量守恒在微观粒子作用过程中不一定成立,这样就可以解释β衰变中的能量亏损现象了。

玻尔是泡利的良师益友,两人之间有着深厚的友情。可是泡利并未因此而放弃自己的观点,他不相信在自然界中惟独β衰变过程违反守恒定律。为了“挽救”能量守恒原理,找到能量亏损的真实原因,他思索着,钻研着……终于,在1931年他大胆地提出了自己的科学假想——他假设存在一种新的粒子,它伴随β粒子从核中发射出来,但此种粒子质量很微小,不超过电子质量的万分之一,不带电,稳定,由此满足每次β衰变事件中能量守恒。并且为了使β衰变中自旋守恒,他还假设这种粒子的自旋为1/2。1932年,费米把这种粒子称为“中微子”,意思就是“微小的中性小家伙”。

泡利的中微子假说提出以后,令人信服地说明了β衰变中失踪能量的去向,圆满地解决了这个矛盾。然而由于中微子没有电荷也没有质量,就像个“幽灵”般神秘莫测,许多物理学家忧虑地认为,这不过是泡利为了维护能量守恒定律,使能量在数值上达到平衡而想像出的不切实际的幻影。

在巨大的压力面前,泡利没有屈服,仍以科学的态度严肃认真地进行着科学研究。经过漫长的25年后,1956年,美国洛斯·阿拉莫斯科学实验室终于第一次直接观测到中微子,证实了中微子的确是存在的。泡利比此前许多伟大的科学家幸运得多,他终于亲眼看到了自己的科学假说变成了现实,他欣慰地笑了。

泡利在量子力学、量子场论和基本粒子理论方面的卓越贡献,特别是他的不相容原理和β衰变中的中微子假说等,在理论物理学的发展史册上谱写了辉煌的一页。他的名字与相对论、量子力学和量子场论紧紧地联系在一起,人们称赞他为“当之无愧的理论物理学家”、“理论物理学的心脏”。

作为一个理论物理学家,泡利的最后一项重要工作是研究场论中的各种分立对称性,他证明了每个洛仑兹不变拉格朗日场论,在CTP(电荷共轭、时间反演、宇称)操作下是不变的,而C、T和P不必分别是对称的。不久之后泡利就发现,在弱相互作用中,例如在β衰变中,对称是不守恒的,即P单独是不守恒的,这一发现使他激动万分。

正当他在科学的高峰上奋力攀登的时候,却不幸患了重病,1958年12月14日在瑞士苏黎世逝世,享年58岁。

同类推荐
  • 青少年百科·中

    青少年百科·中

    《青少年百科》是我社最近推出系列长卷之一,是促进青少年健康成长的必不可少的百科全书,是一部提高青少年综合素质、增强青少年全面修养的良师益友。
  • 侏罗纪:恐龙开始复活(青少年科学探索营)

    侏罗纪:恐龙开始复活(青少年科学探索营)

    《侏罗纪:恐龙开始复活》一书为读者详细讲述了梁龙、腕龙、雷龙、鲨齿龙、角鼻龙等众多恐龙的体态特征与生活习性,阅读本书,有助于广大青少年读者走进恐龙的世界去进一步了解恐龙的相关知识。
  • 世界奇异现象档案录

    世界奇异现象档案录

    奇异现象犹若色彩斑斓的万花筒,点缀在我们的生活中或尘封在历史中。它们时而扑朔迷离,时而迷雾重重,时而变幻莫测,时而漏出端倪。阅读过程中,它们或挑战我们的思维极限,或让我们惊呼不可思议,或超出我们想象力之外,令我们热血沸腾、欲罢不能。
  • 中国民间环保组织(人与环境知识丛书)

    中国民间环保组织(人与环境知识丛书)

    《中国民间环保组织》是一套科普类图书,旨在通过介绍与人类生产、生活以及生命健康密切相关的环境问题来向大众普及环境知识,提高大众对环保问题的重视。这本《中国民间环保组织》由刘芳主编,为其中之一。
  • 飞向蓝天的历程(趣味科学馆丛书)

    飞向蓝天的历程(趣味科学馆丛书)

    “趣味科学馆”丛书,是一套自然科学类读物。丛书包罗科学的多个领域,涉及“信息化”、“绿色革命”、“发明、“生态资源”、“航天”、“军事”、“日食、月食”等当下热门关键词,有引领读者关注热点、提升其认识水平的现实价值。刘芳主编的《飞向蓝天的历程》为丛书之一。《飞向蓝天的历程》内容涉及飞机的各个侧面,并进行合乎逻辑的排列组合。文字浅显易懂,生动活泼。
热门推荐
  • 海南杂着

    海南杂着

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 火影之宇智波夏雪

    火影之宇智波夏雪

    我曾经从一个混乱的世界存活下来,也有过不愉快的过去,与那些老妖怪有一些渊源,希望辉夜不要恨我,现在,我选择开一间小店混吃混喝感谢大家阅读,欢迎加群716909878
  • 蜚影网吧

    蜚影网吧

    数万年前的故事,落入凡间的人,是选择回归,还是选择堕落为咸鱼。这个网吧,会有答案
  • 莫得然之一映

    莫得然之一映

    莫然在位两年,身边多亏西南王的辅助才得以坐稳帝位,却不想一直最信任的兄长最后就是选择皇位,把自己这个皇弟直接抹杀,仅存的求生欲促使他毫无目的地跑,直至体力不支而倒下。醒来的时候发现自己已不在熟悉的国家,四周都是自己没有见过的铁具木具,第一眼看到的更是一名神色清冷,五官精致的女性。凤昭映的父母是一段传奇,传说中的国民第一cp,受尽期望的她却一反而行,乖乖上大学还选读了极冷门又极具难度的地质学。在一次实习中来到一个神秘的晶石洞穴,不想还给自己捡回一名后来对她死缠烂打的痴情未婚夫。莫然:“映儿是在下的救命恩人,在下不才又没有财富,只能以身相许。”凤昭映:“抱歉,我不需要。”
  • 愿你特别凶狠,也特别温柔

    愿你特别凶狠,也特别温柔

    他人的圣经,带你去不了天堂。这世上没有更好走的路,人生该走的弯路,你一步都少不了。愿你有傲骨,也有慈悲,有高跟鞋,也有跑鞋,这一路无论遭遇多少挫折和悲喜,永远生猛,永远期待,特别敢,又特别美。
  • 千古英雄

    千古英雄

    郑成功既是一个顶级英雄,又是一个完人。他不但文武双全而且品德高尚,是中国历史上非常难得的人物。郑成功最突出的是忠君爱国,在国难当头时他挺身而出,力挽狂辛阑;劝降面前,他大义凛然,铁骨铮铮,是中国人民族气节的典范。占领金门、厦门后,他不是偏安一隅,而是挥师北上抗清复明,志在中兴,可见他对国对人民的忠心。更可贵的是,收复台湾时,危难之际,他身先士卒,导航在前,不愧是顶天立地的英雄。他既有雄心壮志,又善于隐忍磨砺,十年生聚,卧薪尝胆,枕戈泣血十六年终于收复了台清。更难得的是他既是大将,又是模范丈夫,家庭和睦,夫妻恩爱。他还是个孝子,是个忠孝两全的人。他既指挥作战,又体恤下士。他是一个最关爱兵士的将领。
  • 魔神不想当帝后

    魔神不想当帝后

    肖萧觉得自己可能是天道的私生子,前世没爹没妈,好不容易遇到了一个喜欢的人还把自己玩穿越了。进府第一天,国师:“徒儿,徒儿叫师傅”肖萧:……进府的第二天,国师:“肖萧来了好好伺候!”肖萧:丫的,国师府地牢一日游真好!进府第三天,国师:“我睡不着,你好好泡着,我看看星星。”肖萧:半夜把人扔山顶!进府第四日:……………多年以后,二人早已成了世界的主宰,故地重游,看着这片大陆,不禁感慨:有事你深陷泥潭,遇到的那个人可能不会救你,还会和你一起玩泥巴。
  • 明歌天下

    明歌天下

    初见——她是明府不受宠的丑女大小姐,实则习得一身好武艺,倾城容貌,红衣妖娆。他是皇家最受宠的储君墨王殿下,高深莫测,性情难以捉摸,俊美无疆,惊才绝艳。他将她视若珍宝,她亦将他放在心尖上。他雄心壮志,手指江山如画,剑指列国疆土。她从来不信命,踏遍万水千山,只为他寻药。
  • 一往情深不及你

    一往情深不及你

    童璐被所有人嘲笑,因为她把自己嫁给了一个癌症晚期的老公,结婚当天被告知丈夫去世。谁知道,哈哈,四年后,一个不老不死、宛若神奇宝贝的神秘丈夫强势回归,亮瞎了所有人的眼。传闻,冷家掌权人冷夜谨手腕狠辣,势力滔天,得罪他的人没有一个好下场,唯独为他守了四年活寡的小妻子不经意间入了他的心,从此,他只想翻手为云覆手为雨,将她宠上天……
  • 闪闪奇遇记四:土拨鼠先生·译言古登堡计划

    闪闪奇遇记四:土拨鼠先生·译言古登堡计划

    因为一个普通的捕鼠夹,闪闪在睡梦中邂逅了土拨鼠先生,重新认识了土拨鼠的世界,当人类闪闪被土拨鼠法官残忍地定了罪,她也开始认识到人类曾经的残忍。