登陆注册
2708000000017

第17章 物理大发现(10)

卡门1881年5月11日生于匈牙利,父亲是教育学教授,他受到了良好的早期教育。儿童时代的卡门,很早就显露出数学天赋。卡门的数学天赋着实使父亲感到惊奇,但是卡门的父亲从全面教育出发,不得不采取措施,抑制他在数学方面的智力发展,让他多学些人文科学知识。

9岁那年,卡门进入了被人们誉为“明星摇篮”的匈牙利明达中学。17岁的卡门,作为一名中学优等生,进入了当时匈牙利惟一的工科大学约瑟夫皇家工艺大学。25岁的卡门争取到了匈牙利科学院的奖学金后,便前往当时世界的科学圣地——哥廷根。

20世纪初,哥廷根的人口不足3万,然而,这是一座智力之城、学院之城,哥廷根在近代科学文明中颇有名望。古老的建筑,迷人的花园,幽静的街巷,一派静悄悄地庄严气氛,世纪的墙垣环抱着郁郁葱葱的林阴,哥廷根大学哥特式建筑的尖形塔,更使这里具有中世纪修道院的风格。

哥廷根大学是1734年创建的一所古老的普鲁士大学,当时是世界理论科学的中心。哥廷根也是近代流体力学的发祥地,被誉为“空气动力学之父”的路德维希·普朗特此时正在这里主持工作。

普朗特十分注意研究从复杂的工程问题中抽出基本的物理过程,再用简化的数学方法加以分析,这与卡门的想法十分吻合。

在普朗特的指导下,卡门利用哥廷根良好的实验条件,对一系列机械工程问题进行了研究。

这为他日后的飞机结构设计,提供了重要的技术保障。

1903年,卡门通过了博士学位答辩,而后赴巴黎学习考察。不久,普朗特从哥廷根寄邀请信,要卡门回去担任实验室的助手,参加哥廷根第一个风洞的筹建及“齐柏林号”飞艇的设计。卡门愉快地接受了这一邀请,从此他开始了作为航空科学家的生涯。

哥廷根风洞是为“齐柏林号”飞艇设计服务的;卡门协助普朗特完成了德国第一批空气动力学实验。同时,他还担任力学课的教员。哥廷根的学习、研究和生活对于卡门说来是十分珍贵的。

当时,一批科学明星荟萃于哥廷根。卡门置身于这些科学大师之中,眼界大开。尤其是希尔伯特与克莱因这两位各有所长的数学大师,对卡门产生了深远影响,使卡门横跨两个基本学科——纯粹数学和应用数学。

卡门投入科学研究初期,正是物理学的革命时期。放射性的发现正在揭开原子奥秘的帷幕。

1911年到1921年间,普朗特正在研究边界层分离现象。他设计了一个水槽,用以观察流体经过圆柱体后面的分离现象。水槽里的水流不断发生摆动,普朗特对此并不注意。卡门思想敏捷,善于洞察事物本质,当他插手这一实验之后,立即加以深入研究。

实验显示,流水在圆柱后形成两排交叉的涡旋。卡门对此进行了数学分析,从理论上证明只有交叉排列的涡旋才是稳定的。他在三个星期内完成了两篇出色的论文,这两篇论文成为流体力学中一次重大发现的标志。

流体经过一个障碍物,会在它后面留下两排交叉的涡旋,这一现象早已为人们所知,但是,卡门第一次从理论角度阐明了这一现象的实质。由于这两排交叉的涡旋好像是大街两旁的两排街灯,于是人们把这一现象叫做“卡门过街”。

在人类的建筑史上,因忽视“卡门过街”的作用,曾发生过一起惊心动魄的事件。事情是这样的:在美国西雅图附近有一座横跨塔科马海峡的大桥,它是一位著名建筑师设计的“艺术杰作”。1940年11月7日,8级狂风大作,在强烈的“卡门过街”的作用下,大桥发生了急剧的扭曲、振动,结果在不到一个小时崩塌殆尽。人们最终意识到建筑设计必须考虑“卡门过街”的效应,因为一切建筑物都处于空气这一流体之中,风速过快时都会产生“卡门过街”

现象。

卡门离开哥廷根前往亚琛任教时,已经奠定了他的基本流体力学理论权威的基础。不久,他担任亚琛工学院空气动力研究所所长。他在亚琛工作期间,组织并主持了三次国际应用力学会议。卡门和他的老师普朗特合作研究,突破了如今仍被人们视为流体力学最大难题的“湍流”问题,虽然这个问题至今仍困扰着人类,但“湍流”问题的研究在这一时期获得了第一次重大进展。卡门和普朗特的湍流理论,现在仍是工程湍流计算中的重要依据,成为流体力学的经典理论。

1929年卡门出任加州理工学院航空实验室主任时,美国的航空工业正处于蓬勃发展阶段。从1930年到1942年,经过12年的努力,卡门领导的加州理工学院航空实验室,已经成为国际流体力学研究中心。卡门在整个流体力学领域,指导了两代科学家和工程师,开拓了新领域,为航空技术奠定了扎实的科学基础。

1945年,卡门起草了一份关于航空工业发展必须依靠科学技术的报告。报告分析了两次世界大战中的人力、武器、科学技术的作用,还具体探讨了超音速飞行和火箭的技术问题,这篇报告对美国当局产生了非常深刻的影响。

在卡门的倡导、呼吁下,美国逐步成立了一些研究机构。1947年超音速无人驾驶飞机发展中心成立;1948年著名的智囊机构——兰德公司成立;1952年阿诺德航空工程公司成立;1957年成立了国家原子能委员会。到1957年,卡门的计划大多已付诸实施,火箭、导弹已经大量生产,超音速飞机横越大洋,人造卫星也已经围绕着地球运行。

第二次世界大战战火熄灭之后,卡门全心地致力于发展国际航空事业。50年代,卡门主持了两次国际航空会议,创建了国际宇航科学协会,成立了国际宇航科学院,推动了国际宇航事业的发展。

当时十分脆弱的中国航空事业也得益于卡门的指点。1929年,卡门路经中国,建议在清华大学开设航空课程。抗战爆发后,清华大学创办航空系,卡门派他的弟子、航空技术专家沃登道夫来华担任该系的科学顾问。

卡门在加州理工学院时期,还培养了一批出色的中国科学家,他们之中有众人熟知的钱学森、郭永怀、钱伟长,以及美籍华人林家翘等。其中钱学森在30年代末期火箭技术还处于摸索阶段就与其他几位年轻科学家看到了这一技术的发展远景,成立了一个名叫“火箭俱乐部”

的研究小组。这一小组后来发展为加州理工学院喷气推进实验室,成为全世界火箭喷气技术的一大中心。

卡门在漫长的科学生涯中,对流体力学、空气动力学,尤其是以此为基础的航空技术贡献卓著。他不仅是宇航工业技术的研制者,更是国际航天事业的组织者,他同时涉足理论和应用科学两大领域。直到70岁时,卡门还集中精力研究一门他所生疏的学科——燃烧学,他把燃烧化学与流体力学结合起来,奠定了现代燃烧理论的基础。

泡利不相容原理的发现

1900年4月25日,伏尔夫岗·泡利(1900~1958)生于奥地利首都维也纳。

他的父亲做过医生,是一个有名的学者,后来担任维也纳大学胶体化学教授。泡利出生后接受过天主教的洗礼,教父是物理学家和哲学评论家厄恩斯特·马赫,因此泡利自幼就受到了良好的科学环境的熏陶。他在念小学时,学习成绩始终名列前茅。上中学后,课堂教学已经满足不了他的需要,他广泛阅读课外书籍,尤其喜欢自然科学。

中学快毕业时他得知,爱因斯坦发表了广义相对论,这在当时是一门崭新的学科,是物理学的前沿。他对此表现了极大兴趣,甚至在课堂上也在偷偷地阅读。他那时已掌握了高等数学,所以读过爱因斯坦的著作后,他感到眼中的翳障突然消失,一下子对广义相对论能够心领神会了。

中学毕业后,泡利决定攻读理论物理学。他进了慕尼黑大学,跟随良师益友索末菲。索氏当时在德国以至世界上都可以算得上一位最有声望的理论物理学导师,许多杰出的科学家,包括海森堡、贝蒂在内都出自他的门下。

在这里,泡利在索末菲教授的指导下,他的理论分析技术更臻成熟,他的非凡才华得以显露。在为《数学百科全书》撰写相对论综述之前,尽管泡利当时还不到20岁,可是已经发表过好几篇相对论的论文了,因此深得索末菲的赏识。

1921年,泡利以论文《论氢分子的模型》取得博士学位,从慕尼黑大学毕业。他的论文被认为是对于玻尔-索末菲量子理论应用问题的卓有见地的文章。

1922年,泡利离开慕尼黑大学,来到哥廷根大学——当时由玻恩和弗兰克领导的世界理论物理研究中心,担当玻恩的助手。在此期间,他结识了尼尔斯·玻尔。一学期后,他接受了玻尔的邀请,来到了哥本哈根理论物理研究所工作。这里自由的学术空气和讨论方式,加之名师的指导,使泡利学到了科学的思维方法,锻炼了纯熟的数学技巧,弥补了他不擅长实验、动手能力不足的弱点。此后不久,他又去了汉堡大学担任编外讲师。

从1923年到1928年这5年中,泡利一边进行教学工作,一边开始从事量子物理学的研究。他专攻的首要课题就是反常塞曼效应。反常塞曼现象深深地迷住了他,在他的宿舍里,桌子上、床上到处都是演算的草稿,窗台上老是放着未吃完的面包,他从早到晚不上运动场,也不去音乐厅,总是写啊,算啊,可是却一直没有头绪,因此他总是整天愁眉苦脸的。

当然,泡利没有把反常塞曼效应的问题完全解决。事实上,当时波动力学还没有发展起来,要想完全解决这个问题也是不可能的。但是,他把塞曼效应的研究用来正确地解释光谱线的精细结构,这是电子所具有的一种在经典力学中找不到的新性质。为了解释这种精细结构,泡利用一个新的只能取两个值的量子数来描述电子,这个新量子数就是电子自旋的投影,他后来因此发现了电子自旋。这个新量子数的存在和泡利所做的解释都得到了证实。

新量子数的发现为泡利最重要和最著名的发现做了准备。1925年,这方面的研究终于使他发现了自然界的一条基本规律——泡利不相容原理。在泡利提出这个原理之前,朗德、索末菲和玻尔等人都相信碱金属原子中被价电子围绕的那部分组成,具有角动量,这角动量是磁反常的原因。至于这部分组成为什么具有角动量和磁矩,则谁也说不出道理。

泡利不相容原理认为:一个原子中不能有两个或更多的电子处在完全相同的量子状态。应用这个原理可以很好地解释原子内部的电子分布状况,从而把由玻尔的原子理论不能圆满解释的元素周期表的分布规律说得一清二楚。这个重要发现使泡利在20年后,即1945年,获得了诺贝尔物理学奖。

从1928年起,他担任了慕尼黑联邦工业大学的理论物理学教授,他在这里一直工作到去世。

近30年的时间里,他一直坚持不懈地刻苦钻研,他以自己非凡的智慧,凭借科学的预想和不断创新的精神攀登着一个又一个的科学高峰。

20世纪20年代物理学家们发现:在原子核放出电子的β衰变过程中,放射出来的电子所携带的能量,并不和原子核所损失的质量相对应。经测定,放出电子所带走的总能量要小一些,也就是说,在β衰变过程中有能量“亏损”的现象。

那么,这一部分亏损的能量到哪里去了呢?大家都知道,能量是不能创造也不能消灭的,只能由一种形式转化为另一种形式。面对这种情况,人们犹豫、彷徨。1930年,玻尔甚至准备放弃能量守恒原理,因为他认为,能量守恒在微观粒子作用过程中不一定成立,这样就可以解释β衰变中的能量亏损现象了。

玻尔是泡利的良师益友,两人之间有着深厚的友情。可是泡利并未因此而放弃自己的观点,他不相信在自然界中惟独β衰变过程违反守恒定律。为了“挽救”能量守恒原理,找到能量亏损的真实原因,他思索着,钻研着……终于,在1931年他大胆地提出了自己的科学假想——他假设存在一种新的粒子,它伴随β粒子从核中发射出来,但此种粒子质量很微小,不超过电子质量的万分之一,不带电,稳定,由此满足每次β衰变事件中能量守恒。并且为了使β衰变中自旋守恒,他还假设这种粒子的自旋为1/2。1932年,费米把这种粒子称为“中微子”,意思就是“微小的中性小家伙”。

泡利的中微子假说提出以后,令人信服地说明了β衰变中失踪能量的去向,圆满地解决了这个矛盾。然而由于中微子没有电荷也没有质量,就像个“幽灵”般神秘莫测,许多物理学家忧虑地认为,这不过是泡利为了维护能量守恒定律,使能量在数值上达到平衡而想像出的不切实际的幻影。

在巨大的压力面前,泡利没有屈服,仍以科学的态度严肃认真地进行着科学研究。经过漫长的25年后,1956年,美国洛斯·阿拉莫斯科学实验室终于第一次直接观测到中微子,证实了中微子的确是存在的。泡利比此前许多伟大的科学家幸运得多,他终于亲眼看到了自己的科学假说变成了现实,他欣慰地笑了。

泡利在量子力学、量子场论和基本粒子理论方面的卓越贡献,特别是他的不相容原理和β衰变中的中微子假说等,在理论物理学的发展史册上谱写了辉煌的一页。他的名字与相对论、量子力学和量子场论紧紧地联系在一起,人们称赞他为“当之无愧的理论物理学家”、“理论物理学的心脏”。

作为一个理论物理学家,泡利的最后一项重要工作是研究场论中的各种分立对称性,他证明了每个洛仑兹不变拉格朗日场论,在CTP(电荷共轭、时间反演、宇称)操作下是不变的,而C、T和P不必分别是对称的。不久之后泡利就发现,在弱相互作用中,例如在β衰变中,对称是不守恒的,即P单独是不守恒的,这一发现使他激动万分。

正当他在科学的高峰上奋力攀登的时候,却不幸患了重病,1958年12月14日在瑞士苏黎世逝世,享年58岁。

同类推荐
  • 青少年必知的100种生物知识

    青少年必知的100种生物知识

    生命是永恒的话题,从古至今,人们总是孜孜不倦地探索着生命的奥秘,本书所介绍的,正是世界上不分国家、不分肤色、不分男女老少的人们所共同关注的话题。本书不仅系统地介绍了生物知识,同时还讲述了有趣的生命现象,揭示了世界上未解的生物之谜,可谓知识性与趣味性并存。
  • 世界经典科幻故事全集:太空环游的故事

    世界经典科幻故事全集:太空环游的故事

    我们编辑的这套《世界经典科幻故事全集》包括《太空环游的故事》、《星球纵览的故事》、《海底探险的故事》、《岛上猎奇的故事》、《科学传奇的故事》、《奇异幻想的故事》、《神秘人类的故事》、《远古寻踪的故事》、《机器大战的故事》和《古堡秘影的故事》等10册内容,精选了包括法国著名科幻作家、科幻小说之父儒勒· 凡尔纳和英国著名科幻作家威尔斯等人的作品近百篇,既有一定的代表性, 又有一定的普遍性,非常适合青少年阅读和学习。
  • 缉捕追踪的故事

    缉捕追踪的故事

    青少年是祖国的宝贵财富,是未来的希望,而科学技术是社会发展的第一生产力,如何提高自己的智力,怎样便捷地掌握科学文化知识,是摆在我们面前的重要课题。为了帮助青少年开启智力,拓展思路,我们根据青少年的特点,把高深复杂的各科知识趣味化、简单化,力求使青少年在快乐的学习中得到启迪,学到知识,增加智商。
  • 花朵的故事

    花朵的故事

    美国著名作家路易莎·梅·奥尔科特著作,是作者十六岁写出的第一本书,专为女孩写的童话,描写了一个属于花朵和精灵的美妙世界,故事借鉴了《十日谈》与《乌托邦》等古典文化名篇的写作手法,清新雅丽的文笔,深受当时美国的文学前辈,如爱默生和梭罗等大师的赞赏。
  • 安武林的阅读成长书(套装共6册)

    安武林的阅读成长书(套装共6册)

    《安武林的阅读成长书》套装共分为6册,分别为《开满鲜花的小路》、《飞上天的自行车》、《一座颠倒的医院》、《地上的星星》、《一个书呆子》、《男孩不怕羞》。收集了安武林100余篇短篇童话,近70首诗以及作者对童年和少年乡村生活、学校生活以及家庭亲情的真实表达与再现,汤素兰评价说:安武林的作品喜欢写细小的事物与细小的对象,写童话的他像是一个手持显微镜的孩子,将世界一寸一寸地看过去,于是,充满了惊奇与赞叹。
热门推荐
  • 惊世俏巫医

    惊世俏巫医

    她是弃婴,废材,一个历经劫难的小女生。他是全球最顶尖的霸主,真容绝美,传承神秘,多变的身份和面孔让人无法捕捉他迷样的行踪和内心。当她的清澈对上他的深邃,便注定了黑暗和玄异世界从此风急浪涌!一朝激发潜藏血脉,她变身都市女巫,异宠来附,灵器来投,挥袖横扫全球玄异学界,谈笑传承黑道神医衣钵,在俗世和玄异界一步步走上世界的巅峰!从此,全球第一神医是她,修真教母是她,商业霸主、影视巨星的背后掌舵人还是她!阴魂、妖物、蛊毒、邪魔…管你是什么,是龙你给我盘着,是虎你给我卧着!西方玄异大佬敢来挑衅?先打过我家门童再说!——————————————————某日,小两口闹别扭……手下急匆匆来报:“老大,蓝小姐跟A国际集团少董结伴同游!”某男不为所动:“无妨。10分钟后A的股票会大跌,他们立刻回来。”又某日,手下又急报:“老大,蓝小姐跟肖少正在情侣岛共进烛光晚餐!”某男淡定自若:“知道了,5分钟后他的特种训练基地会被轰炸,他吃不下。”又某日,手下又急报:“老大,某国际红牌偶像男星向蓝小姐求爱!”某男爱理不理:“你见过世上有比你老大我更美更强的男人么?”再某日,一份报告直接铺陈在桌案上,某男的脸黑得要杀人:“安排下去,我暂时离开一个月,让兄弟们各自守好本分。”“老大,你去哪里?”“废话!当然是去管教那个小巫婆!”某男冷厉邪魅地一顿,“传令下去,以后没有蓝小姐,全体叫大嫂!”——————————————————本文一对一,男女主身心干净,亲们放心入坑!
  • 还能不能好好约个会

    还能不能好好约个会

    一次约会,彻底改变了方想的人生。方想苦笑:咸鱼做不成了,还是努力变强吧!
  • 田园有喜之憨夫宠入骨

    田园有喜之憨夫宠入骨

    顾家有女名欢喜,长辈疼哥哥宠,原以为一世欢喜,奈何一朝风云起,娘亲死,哥哥下落不明,父亲很快娶继室,百两银子卖欢喜。面对家徒四壁,全是极品的田家,没关系,欢喜会种地,还会持家,更擅长赚钱和养娃,手撕白莲花,怒踹贱渣渣。赚个盆满钵满,妇唱夫随乐呵呵。“娘子,咱们去种田吧!”“好啊!”
  • 异域三国恋:麻雀戏诸候

    异域三国恋:麻雀戏诸候

    一次意外的丛林探险,让我落入了一个不知名的世界。这里如同古代的三国,而我成了人们口中能改变乱世的异人。我是项宝儿,除了吃喝玩乐什么能力都没有,怎么可能是他们口中的神呢?离国的强势太子,雁国的温和少君,还有商国富豪之后都向我伸出友谊之手,而我知道:无论倾向哪一边,三国之战已不可避免的爆发了……
  • 索性跟你走

    索性跟你走

    面对喜欢的,合适的,舒服的女主会做出什么选择呢?
  • Changing How the World Does Business

    Changing How the World Does Business

    From one of the founding executives of Fed Ex comes the first full inside story of how Fed Ex came to be one of the world's most successful, innovative, and admired companies. Frock reveals the details of how the company was conceived, launched, and kept afloat despite incredible obstacles.
  • 综穿之漫漫人生

    综穿之漫漫人生

    白雅得到空间开始了穿越之旅,虽然不知道这漫漫旅途何时能结束,但是她一直在努力享受生活
  • 废材逆袭绝宠女王

    废材逆袭绝宠女王

    异世大陆,王者归来一夜之间,废材摇身一变成为天才少女。呵,谁说她是废材,丹药用盆装,神兽有一群,不服,不服你打我啊,我群殴你哦。皇子?哦,人家不稀罕,人家尊上都来倒贴。“女王大人,咱回家吧,我饿了?”某尊可怜兮兮的,“饿了就吃,找我干嘛?”
  • 精灵之关东学院

    精灵之关东学院

    高三少年穿越神奇宝贝世界,通过常年阅读神奇宝贝百科获得的知识,穿越后富家子弟的身份,运用朴实无华(金钱攻势)的训练法强化自己的神奇宝贝,不走徽章路线,一步步成长为关东四天王,一改关东地区的颓势,重现荣光!!!关键词:神奇宝贝,口袋妖怪,宠物小精灵,精灵宝可梦
  • 重生师兄,求放过

    重生师兄,求放过

    正所谓穿越不够,重生来凑。身为穿越者中一枚微不足道的咸鱼,章潇潇经历了种种磨难后还是死在自家黑化了的大师兄手里,然后非常不妙的重生了。更不妙的是,大师兄也重生了,时间点还比她早!简直没天理!原以为自己回来是要拯救苍生,从此走上人生巅峰的,哪知道苍生让大师兄救了,人生巅峰也被大师兄占据了。她这重生究竟图个啥啊?林宸鄞:当然是跟大师兄一块生猴子。章潇潇:大家都是重生,师兄你别为难人好不好?